Khavinson, D., Shapiro, H.S.: Remarks on the reflection principles for harmonic functions. J. Anal. Math. 54, 60–76 (1991)
MathSciNet
MATH
Article
Google Scholar
Ebenfelt, P., Khavinson, D.: On point to point reflection of harmonic functions across real analytic hypersurfaces in \(\mathbb{R}^n\). J. Anal. Math. 68, 145–182 (1996)
MathSciNet
MATH
Article
Google Scholar
Study, E.: Einige elementare Bemerkungen über den Prozess der analytischen Fortsetzung. Math. Ann. 63, 239–245 (1907)
MATH
MathSciNet
Article
Google Scholar
Davis, Ph: The Schwarz Function and Its Applications. Carus Mathematical Monographs. MAA, Washington (1979)
Google Scholar
Lewy, H.: On the reflection laws of second order differential equations in two independent variables. Bull. Am. Math. Soc. 65, 37–58 (1959)
MathSciNet
MATH
Article
Google Scholar
Garabedian, P.R.: Partial differential equations with more than two independent variables in the complex domain. J. Math. Mech. 9, 241–271 (1960)
MathSciNet
MATH
Google Scholar
Aberra, D., Savina, T.V.: The Schwarz reflection principle for polyharmonic functions in \({\mathbb{R}}^2\). Complex Var. Theory Appl. 41(1), 27–44 (2000)
MATH
MathSciNet
Google Scholar
Savina, T.V., Sternin, BYu., Shatalov, V.E.: On the reflection law for the Helmholtz equation. Dokl. Math. 45(1), 42–45 (1992)
MathSciNet
MATH
Google Scholar
Savina, T.V.: On non-local reflection for elliptic equation of the second order in \({\mathbb{R}}^2\) (the Dirichlet condition). Trans. Am. Math. Soc. 364(5), 2443–2460 (2012)
MathSciNet
MATH
Article
Google Scholar
López, R.R.: On reflection principles supported on a final set. J. Math. Anal. Appl. 351, 556–566 (2009)
MathSciNet
MATH
Article
Google Scholar
Khavinson, D., Lundberg, E.: Linear Holomorphic Partial Differential Equations and Classical Potential Theory. Linear Holomorphic Partial Differential Equations and Classical Potential Theory, vol. 232. American Mathematical Soceity, Providence (2018)
MATH
Book
Google Scholar
Beznea, L., Pascu, M.N., Pascu, N.R.: An equivalence between the Dirichlet and the Neumann problem for the Laplace operator. Potential Anal. 44, 655–672 (2016)
MathSciNet
MATH
Article
Google Scholar
Evans, L.C.: Partial Differential Equations. Graduate Studies, vol. 19, second edn. American Mathematical Society, Providence (2010)
Google Scholar
Friedman, A.: Partial Differential Equations. Holt, Rinehart and Winston, New York (1969)
MATH
Google Scholar
Ebenfelt, P., Khavinson, D., Shapiro, H.S.: Algebraic Asp Dirichlet Probl Ration Data. Quadrature domains and their applications, Operator Theory Advances and Applications 156, 151–172 (2005)
MATH
Article
Google Scholar
Khavinson, D., Shapiro, H.S.: Dirichlet’s problem when the data is an entire function. Bull. Lond. Math. Soc. 24, 456–468 (1992)
MathSciNet
MATH
Article
Google Scholar
Armitage, D.H.: The Dirichlet problem when the boundary function is entire. J. Math. Anal. Appl. 291(2), 565–577 (2004)
MathSciNet
MATH
Article
Google Scholar
Chamberland, M., Siegel, D.: Polynomial solutions to Dirichlet problems. Proc. Am. Math. Soc. 129, 211–217 (2001)
MathSciNet
MATH
Article
Google Scholar
Khavinson, D., Lundberg, E., Render, H.: Dirichlet’s problem with entire data posed on an ellipsoidal cylinder. Potential Anal. 46(1), 55–62 (2017)
MathSciNet
MATH
Article
Google Scholar
Khavinson, D., Lundberg, E., Render, H.: The Dirichlet problem for the slab with entire data and a difference equation for harmonic functions. Can. Math. Bull. 60(1), 146–153 (2017)
MathSciNet
MATH
Article
Google Scholar
Khavinson, D., Stylianopoulos, N.: Recurrence relations for orthogonal polynomials and algebraicity of solutions of the Dirichlet problem. In: Laptev, A. (ed.) Around the Research of Vladimir Maz’ya II, Partial Differential Equations. International Mathematical Series, vol. 12, pp. 219–228. Springer, Berlin (2010)
MATH
Google Scholar
Putinar, M., Stylianopoulos, N.: Finite-term relations for planar orthogonal polynomials. Complex Anal. Oper. Theory 1(3), 447–456 (2007)
MathSciNet
MATH
Article
Google Scholar
Render, H.: Real Bargmann spaces, Fischer decompositions and sets of uniqueness for polyharmonic functions. Duke Math. J. 142, 313–352 (2008)
MathSciNet
MATH
Article
Google Scholar
Ebenfelt, P.: Singularities encountered by the analytic continuation of solutions to Dirichlet’s problem. Complex Var. 20, 75–91 (1992)
MathSciNet
MATH
Google Scholar
Savina, T.V.: A reflection formula for the Helmholtz equation with the Neumann condition. Comput. Math. Math. Phys. 39(4), 652–660 (1999)
MathSciNet
Google Scholar
Savina, T.V.: From reflections to a uniform elliptic growth. J. Math. Anal. Appl. (2019). https://doi.org/10.1016/j.jmaa.2019.05.021