On Borg’s method for non-selfadjoint Sturm–Liouville operators

A Correction to this article was published on 18 June 2019

This article has been updated


We prove local solvability and stability for the inverse problem of recovering a complex-valued square integrable potential in the Sturm–Liouville equation on a finite interval from spectra of two boundary value problems with one common boundary condition. For this purpose we generalize classical Borg’s method to the case of multiple spectra.

This is a preview of subscription content, access via your institution.

Change history

  • 18 June 2019

    The original version of the article unfortunately contained few errors under Preliminaries section. The corrected text is given below.


  1. 1.

    Marchenko, V.A.: Sturm–Liouville Operators and Their Applications, Naukova Dumka, Kiev (1977) [English transl., Birkhäuser, 1986]

  2. 2.

    Levitan, B.M.: Inverse Sturm–Liouville Problems. Nauka, Moscow (1984) [English transl., VNU Sci. Press, Utrecht, 1987]

  3. 3.

    Freiling, G., Yurko, V.A.: Inverse Sturm–Liouville Problems and Their Applications. NOVA Science Publishers, New York (2001)

    MATH  Google Scholar 

  4. 4.

    Borg, G.: Eine Umkehrung der Sturm–Liouvilleschen Eigenwertaufgabe. Acta Math. 78, 1–96 (1946)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Karaseva, T.M.: On the inverse Sturm–Liouville problem for a non-Hermitian operator. Mat. Sb. 32(74), 477–484 (1953). (Russian)

    MathSciNet  MATH  Google Scholar 

  6. 6.

    Marchenko, V.A., Ostrovskii, I.V.: A characterization of the spectrum of the Hill operator. Mat. Sb. 97, 540–606 (1975) [English transl. in Math. USSR-Sb. 26 (1975), no. 4, 493–554]

  7. 7.

    Savchuk A.M., Shkalikov, A.A.: Inverse problems for Sturm–Liouville operators with potentials in Sobolev spaces: uniform stability. Funk. Anal. i ego Pril. 44(4), 34–53 (2010) [English transl. in Funk. Anal. Appl. 44 (2010) no. 4, 270–285]

  8. 8.

    Hryniv, R.O., Mykytyuk, Y.V.: Inverse spectral problems for Sturm–Liouville operators with singular potentials. Inverse Probl. 19, 665–684 (2003)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Yurko, V.A.: Method of Spectral Mappings in the Inverse Problem Theory. Inverse and Ill-Posed Problems Series. Amsterdam, Utrecht-VSP (2002)

    Book  Google Scholar 

  10. 10.

    Yurko, V.A.: An inverse problem for integro-differential operators. Mat. Zametki 50(5), 134–146 (1991) (Russian) [English transl. in Math. Notes 50 (1991), no. 5–6, 1188–1197]

  11. 11.

    Buterin, S.A.: On the reconstruction of a convolution perturbation of the Sturm–Liouville operator from the spectrum. Diff. Uravn. 46, 146–149 (2010) [English transl. in Diff. Eqns. 46 (2010), 150–154]

  12. 12.

    Bondarenko, N.P., Buterin, S.A.: On a local solvability and stability of the inverse transmission eigenvalue problem. Inverse Probl. 33(11), 115010 (2017)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Buterin, S.A.: On the reconstruction of a non-selfadjoint Sturm–Liouville operator. In: Matematika. Mekhanika, vol. 2, pp 10–13. Saratov Univ., Saratov (2000) (Russian)

  14. 14.

    Tkachenko, V.: Non-selfadjoint Sturm–Liouville operators with multiple spectra. In: Interpolation Theory, Systems Theory and Related Topics, Oper. Theory Adv. Appl., vol. 134, pp. 403–414. Birkhäuser, Basel (2002)

  15. 15.

    Brown, B.M., Peacock, R., Weikard, R.: A local Borg–Marchenko theorem for complex potentials. J. Comput. Appl. Math. 148, 115–131 (2002)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Marletta, M., Weikard, R.: Weak stability for an inverse Sturm–Liouville problem with finite spectral data and complex potential. Inverse Probl. 21, 1275–1290 (2005)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Buterin, S.A.: On inverse spectral problem for non-selfadjoint Sturm–Liouville operator on a finite interval. J. Math. Anal. Appl. 335(1), 739–749 (2007)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Albeverio, S., Hryniv, R., Mykytyuk, Y.: On spectra of non-self-adjoint Sturm–Liouville operators. Sel. Math. N. Ser. 13, 571–599 (2008)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Horváth, M., Kiss, M.: Stability of direct and inverse eigenvalue problems: the case of complex potential. Inverse Probl. 27, 095007 (2011)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Buterin, S.A., Shieh, C.-T., Yurko, V.A.: Inverse spectral problems for non-selfadjoint second-order differential operators with Dirichlet boundary conditions. Bound. Value Probl. 2013(1), 1–24 (2013). https://doi.org/10.1186/1687-2770-2013-180

    MathSciNet  Article  MATH  Google Scholar 

  21. 21.

    Buterin, S.A.: On an inverse spectral problem for a convolution integro-differential operator. Results Math. 50(3–4), 173–181 (2007)

    MathSciNet  Article  Google Scholar 

Download references


This work was supported in part by the Ministry of Education and Science of Russian Federation (Grant 1.1660.2017/4.6) and by the Russian Foundation for Basic Research (Grant 19-01-00102).

Author information



Corresponding author

Correspondence to Sergey Buterin.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised due to the corrections in Preliminaries section under the paragraph “Thus, (14) implies ...”



Here we prove Riesz basisness of the functional sequence \({\tilde{A}}(\cos 2\rho x)\) appeared in Sect. 3. For this purpose, we use the following ”multiple” version of Proposition 1.8.6 in [3].

Proposition 1

Let complex numbers \(\{\rho _n\}_{n\ge 0}\) of the form

$$\begin{aligned} \rho _n=n+\varkappa _n, \quad \{\varkappa _n\}\in l_2, \end{aligned}$$

be given. Denote by \(m_n\) the multiplicity of \(\rho _n\) and, without loss of generality, assume that

$$\begin{aligned} \rho _n=\rho _{n+1}=\ldots =\rho _{n+m_n-1}, \quad n\in \mathcal{S}:=\{n:\rho _n\ne \rho _{n-1},n\in {{\mathbb {N}}}\}\cup \{0\}. \end{aligned}$$

Then \(\{c_n(x)\}_{n\ge 0}\) is a Riesz basis in \(L_2(0,\pi ),\) where

$$\begin{aligned} c_{k+\nu }(x)=\frac{\partial ^\nu }{\partial \lambda ^\nu }\cos \rho x\Big |_{\rho =\rho _k}, \quad k\in \mathcal{S}, \quad \nu =\overline{0,m_k-1}, \quad \lambda =\rho ^2. \end{aligned}$$


Since, by virtue of (50), \(m_n=1\) for sufficiently large n,  it is easy to show that the sequence \(\{c_n(x)\}_{n\ge 0}\) is quadratically close to the orthogonal basis \(\{\cos nx\}_{n\ge 0}.\) Thus, it remains to prove that \(\{c_n(x)\}_{n\ge 0}\) is complete in \(L_2(0,\pi ).\) In other words, one should show that if the numbers \(\lambda _n:=\rho _n^2,\,n\ge 0,\) are zeros of the function

$$\begin{aligned} F(\lambda )=\int _0^{\pi } f(x)\cos \rho x\,dx, \quad f(x)\in L_2(0,\pi ), \end{aligned}$$

with account of multiplicity, then \(F(\lambda )\equiv 0.\) Consider the function

$$\begin{aligned} \Delta (\lambda ):=\pi (\lambda -\lambda _0)\prod _{n=1}^{\infty } \frac{\lambda _n-\lambda }{n^2}. \end{aligned}$$

It follows from Lemma 3.3 in [21] that \(\Delta (\lambda )=\rho \sin \rho \pi +o(\rho \exp (|Im\rho |\pi )),\,\lambda \rightarrow \infty ,\) and, hence, for any \(\delta >0\) there exist \(C_\delta >0\) and \(\lambda _\delta >0\) such that \(|\Delta (\lambda )|\ge C_\delta |\rho |\exp (|Im\rho |\pi )\) for \(\lambda \in G_\delta :=\{\lambda =\rho ^2: |\rho -n|\ge \delta ,\,n\in {{\mathbb {Z}}}\}\) and \(|\lambda |\ge \lambda _\delta .\) Thus, we arrive at the estimate

$$\begin{aligned} \frac{F(\lambda )}{\Delta (\lambda )}=o\Big (\frac{1}{\rho }\Big ), \quad \lambda \rightarrow \infty , \quad \lambda \in G_\delta , \end{aligned}$$

which along with the maximum modulus principle and Liouville’s theorem yield \(F(\lambda )\equiv 0.\)\(\square \)

Let us return to proving Riesz basisness of the sequence \({\tilde{A}}(\cos 2\rho x).\) Put \({\tilde{\rho }}_{2k-j}=2{\tilde{\rho }}_{kj},\)\(k\ge 1,\)\(j=0,1,\) and \({\tilde{\rho }}_0=0.\) Obviously, the sequence \(\{{\tilde{\rho }}_n\}_{n\ge 0}\) has the form (50). Rearranging a finite number of its elements, we get the sequence \(\{\rho _n\}_{n\ge 0},\) in which multiple elements are neighboring. Construct the functional sequence \(\{c_n(x)\}_{n\ge 0}\) as in Proposition 1. It remains to note that, according to (9), (10) and (15), the sequence \({\tilde{A}}(\cos 2\rho x)\) differs from \(\{c_n(x)\}_{n\ge 0}\) only by order of a finite number of elements.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Buterin, S., Kuznetsova, M. On Borg’s method for non-selfadjoint Sturm–Liouville operators. Anal.Math.Phys. 9, 2133–2150 (2019). https://doi.org/10.1007/s13324-019-00307-9

Download citation


  • Inverse spectral problem
  • Non-selfadjoint Sturm–Liouville operator
  • Borg’s method
  • Nonlinear integral equation
  • Stability

Mathematics Subject Classification

  • 34A55
  • 34B24
  • 47E05