Abstract
We obtain several new sharp necessary and sufficient \({{\,\mathrm{\textit{Lip}}\,}}^m\)-continuity conditions for operators of harmonic reflection of functions over boundaries of simple Carathéodory domains in \({\mathbb {R}}^N\). These results are based on our \({{\,\mathrm{\textit{Lip}}\,}}^m\)-continuity criterion for the Poisson operator in the aforementioned domains.
This is a preview of subscription content, access via your institution.
References
Beurling, A.: Études sur un Problème de Majoration. Almquist and Wiksell, Upsala (1933)
Gardiner, S.J., Gustafsson, A.: Smooth potentials with prescribed boundary behaviour. Publ. Mat. 48(1), 241–249 (2004)
Garnett, J.B., Marshall, D.E.: Harmonic Measure. Cambridge University Press, New York (2005)
Gauthier, P.M.: Subharmonic extensions and approximations. Can. Math. Bull. 37, 46–53 (1994)
Johnston, E.H.: The boundary modulus of continuity of harmonic functions. Pac. J. Math 90(1), 87–98 (1980)
Lebesgue, H.: Sur le probl\(\grave{e}\)me de Dirichlet. Rend. Circ. Mat. Palermo 29, 371–402 (1907)
Maeda, F.Y., Suzuki, N.: The integrability of superharmonoc functions on Lipschitz domains. Bull. Lond. Math. Soc. 21, 270–278 (1989)
Miller, K.: Extremal barriers on cones with Phragmen-Lindelof theorems and other applications. Ann. Mat. Pura Appl. 90, 297–329 (1971)
Paramonov, P.V.: \(C^m\)-extension of subharmonic functions. Izv. Math. 69(6), 1211–1223 (2005)
Paramonov, P.V.: \(C^1\)-extension and \(C^1\)-reflection of subharmonic functions from Lyapunov-Dini domains into \({\mathbb{R}}^N\). Sb. Math. 199(12), 1809–1846 (2008)
Paramonov, P.V.: On \(Lip^m\) and \(C^m\)-reflection of harmonic functions with respect to boundaries of Carathéodory domains in \({\mathbb{R}}^2\). Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki [Herald of the Bauman Moscow State Technical University. Series Natural Sciences], No. 4, pp. 36–45 (2018). https://doi.org/10.18698/1812-3368-2018-4-36-45 (in Russian)
Verdera, J., Mel’nikov, M.S., Paramonov, P.V.: \(C^1\)-approximation and extension of subharmonic functions. Sb. Math. 192(4), 515–535 (2001)
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This work was supported by the Ministry of Science and Higher Education of the Russian Federation in the frameworks of the projects 1.3843.2017/4.6 (Konstantin Fedorovskiy and Petr Paramonov), and 1.517.2016/1.4 (Konstantin Fedorovskiy). Moreover, Konstantin Fedorovskiy was partially supported by the Simons foundation (Simons-IUM fellowship).
Rights and permissions
About this article
Cite this article
Fedorovskiy, K., Paramonov, P. On \({{\,\mathrm{\textit{Lip}}\,}}^m\)-reflection of harmonic functions over boundaries of simple Carathéodory domains. Anal.Math.Phys. 9, 1031–1042 (2019). https://doi.org/10.1007/s13324-019-00296-9
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13324-019-00296-9