Skip to main content

On \({{\,\mathrm{\textit{Lip}}\,}}^m\)-reflection of harmonic functions over boundaries of simple Carathéodory domains

Abstract

We obtain several new sharp necessary and sufficient \({{\,\mathrm{\textit{Lip}}\,}}^m\)-continuity conditions for operators of harmonic reflection of functions over boundaries of simple Carathéodory domains in \({\mathbb {R}}^N\). These results are based on our \({{\,\mathrm{\textit{Lip}}\,}}^m\)-continuity criterion for the Poisson operator in the aforementioned domains.

This is a preview of subscription content, access via your institution.

References

  1. Beurling, A.: Études sur un Problème de Majoration. Almquist and Wiksell, Upsala (1933)

    MATH  Google Scholar 

  2. Gardiner, S.J., Gustafsson, A.: Smooth potentials with prescribed boundary behaviour. Publ. Mat. 48(1), 241–249 (2004)

    MathSciNet  MATH  Google Scholar 

  3. Garnett, J.B., Marshall, D.E.: Harmonic Measure. Cambridge University Press, New York (2005)

    Book  Google Scholar 

  4. Gauthier, P.M.: Subharmonic extensions and approximations. Can. Math. Bull. 37, 46–53 (1994)

    Article  MathSciNet  Google Scholar 

  5. Johnston, E.H.: The boundary modulus of continuity of harmonic functions. Pac. J. Math 90(1), 87–98 (1980)

    Article  MathSciNet  Google Scholar 

  6. Lebesgue, H.: Sur le probl\(\grave{e}\)me de Dirichlet. Rend. Circ. Mat. Palermo 29, 371–402 (1907)

    Article  Google Scholar 

  7. Maeda, F.Y., Suzuki, N.: The integrability of superharmonoc functions on Lipschitz domains. Bull. Lond. Math. Soc. 21, 270–278 (1989)

    Article  Google Scholar 

  8. Miller, K.: Extremal barriers on cones with Phragmen-Lindelof theorems and other applications. Ann. Mat. Pura Appl. 90, 297–329 (1971)

    Article  MathSciNet  Google Scholar 

  9. Paramonov, P.V.: \(C^m\)-extension of subharmonic functions. Izv. Math. 69(6), 1211–1223 (2005)

    Article  MathSciNet  Google Scholar 

  10. Paramonov, P.V.: \(C^1\)-extension and \(C^1\)-reflection of subharmonic functions from Lyapunov-Dini domains into \({\mathbb{R}}^N\). Sb. Math. 199(12), 1809–1846 (2008)

    Article  MathSciNet  Google Scholar 

  11. Paramonov, P.V.: On \(Lip^m\) and \(C^m\)-reflection of harmonic functions with respect to boundaries of Carathéodory domains in \({\mathbb{R}}^2\). Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki [Herald of the Bauman Moscow State Technical University. Series Natural Sciences], No. 4, pp. 36–45 (2018). https://doi.org/10.18698/1812-3368-2018-4-36-45 (in Russian)

  12. Verdera, J., Mel’nikov, M.S., Paramonov, P.V.: \(C^1\)-approximation and extension of subharmonic functions. Sb. Math. 192(4), 515–535 (2001)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin Fedorovskiy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the Ministry of Science and Higher Education of the Russian Federation in the frameworks of the projects 1.3843.2017/4.6 (Konstantin Fedorovskiy and Petr Paramonov), and 1.517.2016/1.4 (Konstantin Fedorovskiy). Moreover, Konstantin Fedorovskiy was partially supported by the Simons foundation (Simons-IUM fellowship).

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedorovskiy, K., Paramonov, P. On \({{\,\mathrm{\textit{Lip}}\,}}^m\)-reflection of harmonic functions over boundaries of simple Carathéodory domains. Anal.Math.Phys. 9, 1031–1042 (2019). https://doi.org/10.1007/s13324-019-00296-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13324-019-00296-9

Keywords