Skip to main content

Eigenvalues of the bilayer graphene operator with a complex valued potential

Abstract

We study the spectrum of a system of second order differential operator \(D_m\) perturbed by a non-selfadjoint matrix valued potential V. We prove that eigenvalues of \(D_m+V\) are located near the edges of the spectrum of the unperturbed operator \(D_m\).

This is a preview of subscription content, access via your institution.

References

  1. Abramov, A.A., Aslanyan, A., Davies, E.B.: Bounds on complex eigenvalues and resonances. J. Phys. A 34, 57–72 (2001)

    MathSciNet  Article  Google Scholar 

  2. Cuenin, J.-C., Laptev, A., Tretter, Ch.: Eigenvalue estimates for non-selfadjoint Dirac operators on the real line. Ann. Henri Poincare 15, 707–736 (2014)

    MathSciNet  Article  Google Scholar 

  3. Davies, E.B.: Non-self-adjoint differential operators. Bull. Lond. Math. Soc. 34(5), 513–532 (2002)

    MathSciNet  Article  Google Scholar 

  4. Davies, E.B., Nath, J.: Schrödinger operators with slowly decaying potentials. J. Comput. Appl. Math. 148, 1–28 (2002)

    MathSciNet  Article  Google Scholar 

  5. Frank, R.L.: Eigenvalue bounds for Schrödinger operators with complex potentials. Bull. Lond. Math. Soc. 43(4), 745–750 (2011)

    MathSciNet  Article  Google Scholar 

  6. Frank, R.L., Laptev, A., Lieb, E.H., Seiringer, R.: Lieb–Thirring inequalities for Schrödinger operators with complex-valued potentials. Lett. Math. Phys. 77, 309–316 (2006)

    MathSciNet  Article  Google Scholar 

  7. Frank, R.L., Laptev, A., Safronov, O.: On the number of eigenvalues of Schrödinger operators with a complex potentials J. LMS (to appear)

  8. Frank, R.L., Laptev, A., Seiringer, R.: A sharp bound on eigenvalues of Schrödinger operators on the half-line with complex-valued potentials. In: Janas, J., Kurasov, P., Laptev, A., Naboko, S., Stolz, G. (eds.) Spectral Theory and Analysis. Operator Theory: Advances and Applications, vol. 214, pp. 39–44. Springer, Basel (2011)

    Chapter  Google Scholar 

  9. Frank, R.L., Sabin, J.: Restriction theorems for orthonormal functions, Strichartz inequalities and uniform Sobolev estimates. Preprint (2014). arXiv:1404.2817

  10. Frank, R.L., Simon, B.: Eigenvalue bounds for Schrödinger operators with complex potentials. III. J. Spectr. Theory (to appear)

  11. Gel’fand, I.M., Shilov, G.E.: Generalized Functions. Volume 1: Properties and Operations. Academic Press, New York (1964). (Harcourt Brace Jovanovich Publishers, London, 1977)

    MATH  Google Scholar 

  12. Laptev, A., Safronov, O.: Eigenvalue estimates for Schrödinger operators with complex potentials. Commun. Math. Phys. 292, 29–54 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg Safronov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Safronov, O., Laptev, A. & Ferrulli, F. Eigenvalues of the bilayer graphene operator with a complex valued potential. Anal.Math.Phys. 9, 1535–1546 (2019). https://doi.org/10.1007/s13324-018-0262-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13324-018-0262-4

Keywords

  • Bilayer Graphene
  • Unperturbed Operator
  • Dimensional Dirac Operator
  • Birman-Schwinger Principle
  • Matrix-valued Function