Skip to main content
Log in

Incompleteness of resonance states for quantum ring with two semi-infinite edges

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper we investigate scattering problem for a quantum graph (a ring), connected with two semi-infinite leads via a Dirac delta function at boundary. We prove incompleteness of the system of resonance states in \(L_2\) on finite subgraph for the Kirchhoff coupling condition at the vertex and discuss a relation with the factorization of the characteristic function in Sz-Nagy functional model. The sensitivity of the incompleteness property to variation of the operator or the graph structure is considered. The cases of the Landau and the Dirac operators at the graph edges demonstrate the same completeness/incompleteness property as the Schrödinger case. At the same time, small variation of the graph structure restores the completeness property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Exner, P., Lotoreichik, V., Tater, M.: On resonances and bound states of Smilansky Hamiltonian. Nanosyst. Phys. Chem. Math. 7, 789–802 (2016)

    Article  Google Scholar 

  2. Aslanyan, A., Parnovski, L., Vassiliev, D.: Complex resonances in acoustic waveguides: Q. J. Mech. Appl. Math. 53(3), 429–447 (2000)

    Article  MathSciNet  Google Scholar 

  3. Duclos, P., Exner, P., Meller, B.: Open quantum dots: resonances from perturbed symmetry and bound states in strong magnetic fields. Rep. Math. Phys. 47(2), 253–267 (2001)

    Article  MathSciNet  Google Scholar 

  4. Edward, J.: On the resonances of the Laplacian on waveguides. J. Math. Anal. Appl. 272(1), 89–116 (2002)

    Article  MathSciNet  Google Scholar 

  5. Exner, P., Kovarik, H.: Quantum Waveguides. Springer, Berlin (2015)

    Book  Google Scholar 

  6. Christiansen, T.: Some upper bounds on the number of resonances for manifolds with infinite cylindrical ends. Ann. Henri Poincare 3, 895–920 (2002)

    Article  MathSciNet  Google Scholar 

  7. Popov, I.Y., Kurasov, P.A., Naboko, S.N., Kiselev, A.A., Ryzhkov, A.E., Yafyasov, A.M., Miroshnichenko, G.P., Karpeshina, YuE, Kruglov, V.I., Pankratova, T.F., Popov, A.I.: A distinguished mathematical physicist Boris S. Pavlov. Nanosyst. Phys. Chem. Math. 7, 782–788 (2016)

    Article  Google Scholar 

  8. Rayleigh, Lord: The theory of Helmholtz resonator. Proc. R. Soc. Lond. A. 92, 265–275 (1916)

    Article  Google Scholar 

  9. Lax, P.D., Phillips, R.S.: Scattering theory. Academic Press, New York (1967)

    MATH  Google Scholar 

  10. Lax, P.D., Phillips, R.S.: Scattering Theory for Automorphic Functions. Princeton University Press, Princeton (1976)

    MATH  Google Scholar 

  11. Adamyan, V.M., Arov, D.Z.: On a class of scattering operators and characteristic operator-functions of contractions. Dokl. Akad. Nauk SSSR 160, 9–12 (1965)

    MathSciNet  MATH  Google Scholar 

  12. Hislop, P.D., Martinez, A.: Scattering resonances of Helmholtz resonator. Indiana Univ. Math. J. 40, 767–788 (1991)

    Article  MathSciNet  Google Scholar 

  13. Gadyl’shin, R.R.: Existence and asymptotics of poles with small imaginary part for the Helmholtz resonator. Russ. Math. Surv. 52(1), 1–72 (1997)

    Article  MathSciNet  Google Scholar 

  14. Popov, I.Y.: Extension theory and localization of resonances for domains of trap type. Math. USSR-Sb. 71(1), 209–234 (1992). https://doi.org/10.1070/SM1992v071n01ABEH001394

    Article  MathSciNet  MATH  Google Scholar 

  15. Popov, I.Y.: The resonator with narrow slit and the model based on the operator extensions theory. J. Math. Phys. 33(11), 3794–3801 (1992)

    Article  MathSciNet  Google Scholar 

  16. Popov, I.Y., Popova, S.L.: Zero-width slit model and resonances in mesoscopic systems. Europhys. Lett. 24(5), 373–377 (1993)

    Article  Google Scholar 

  17. Popov, I.Y., Popova, S.L.: The extension theory and resonances for a quantum waveguide. Phys. Lett. A. 173, 484–488 (1993)

    Article  Google Scholar 

  18. Wulf, U., Krahlisch, M., Kucera, J., Richter, H., Höntschel, J.: A quantitative model for quantum transport in nano-transistors. Nanosyst. Phys. Chem. Math. 4(6), 800–809 (2013)

    Google Scholar 

  19. Pavlov, B.S., Brüning, J., Martin, G.: Calculation of the Kirchhoff coefficients for the Helmholtz resonator. Russ. J. Math. Phys. 16(2), 188–207 (2009)

    Article  MathSciNet  Google Scholar 

  20. Shushkov, A.A.: Structure of resonances for symmetric scatterers. Theor. Math. Phys. 64, 944–949 (1985)

    Article  MathSciNet  Google Scholar 

  21. Popov, IYu., Strepetov, A.V.: On the completeness of eigenfunctions for bilateral Regge problem. Leningrad Univ. Vestnik. Math. 13, 25–31 (1983)

    MATH  Google Scholar 

  22. Vorobiev, A.M., Popov, I.Y.: Model of quantum dot and resonant states for the Helmholtz resonator. J. Phys.: Conf. Series. 643, 012097 (2015)

    Google Scholar 

  23. Sz.-Nagy, B., Foias, C., Bercovici, H., Kerchy, L.: Harmonic Analysis of Operators on Hilbert Space, 2nd edn. Springer, Berlin (2010)

    Book  Google Scholar 

  24. Naboko, S. N.: Functional model of perturbation theory and its applications to scattering theory. In: Boundary Value Problems of Mathematical Physics. 10, Work Collection, vol. 147, pp. 86–114. Trudy Mat. Inst. Steklov (1980); (English version: Proceedings of the Steklov Institute of Mathematics. 147, 85–116 (1981))

  25. Nikol’skii, N.: Treatise on the Shift Operator: Spectral Function Theory. Springer Science & Business Media, Berlin (2012)

    Google Scholar 

  26. Khrushchev, S.V., Nikol’skii, N.K., Pavlov, B.S.: Unconditional Bases of Exponentials and of Reproducing Kernels, Complex Analysis and Spectral Theory (Leningrad, 1979/1980), Lecture Notes in Math., vol. 864, Springer-Verlag, Berlin, pp. 214–335 (1981)

  27. Peller, V.V.: Hankel Operators and Their Applications. Springer Monographs in Mathematics. Springer-Verlag, New York (2003)

    Book  Google Scholar 

  28. Exner, P., Seresova, E.: Appendix resonances on a simple graph. J. Phys. A 27, 8269–8278 (1994)

    Article  MathSciNet  Google Scholar 

  29. Kurasov, P., Enerback, M.: Aharonov–Bohm ring touching a quantum wire: how to model it and to solve the inverse problem. Rep. Math. Phys. 68, 271–287 (2011)

    Article  MathSciNet  Google Scholar 

  30. Popov, I.Y., Popov, A.I.: Line with attached segment as a model of Helmholtz resonator: resonant states completeness. J. King Saud Univ. Sci. 29, 133–136 (2017)

    Article  Google Scholar 

  31. Gerasimov, D.A., Popov, I.Y.: Completeness of resonance states for quantum graph with two semi-infinite edges. Comp. Var. Elliptic Equ. 63, 996–1010 (2018). https://doi.org/10.1080/17476933.2017.1289517

    Article  MathSciNet  MATH  Google Scholar 

  32. Berkolaiko, G., Kuchment, P.: Introduction to Quantum Graphs. AMS, Providence (2012)

    Book  Google Scholar 

Download references

Acknowledgements

This work was partially financially supported by the Government of the Russian Federation (Grant 08-08), by Grant 16-11-10330 of Russian Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Popov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gerasimov, D., Popov, I., Blinova, I. et al. Incompleteness of resonance states for quantum ring with two semi-infinite edges. Anal.Math.Phys. 9, 1287–1302 (2019). https://doi.org/10.1007/s13324-018-0233-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13324-018-0233-9

Keywords

Mathematics Subject Classification

Navigation