Skip to main content

Existence results for trifunction equilibrium problems and fixed point problems

Abstract

In this paper, we establish the existence and uniqueness solutions of trifunction equilibrium problems using the generalized relaxed \(\alpha \)-monotonicity in Banach spaces. By using the generalized f-projection operator, a hybrid iteration scheme is presented to find a common element of the solutions of a system of trifunction equilibrium problems and the set of fixed points of an infinite family of quasi-\(\phi \)-nonexpansive mappings. Moreover, the strong convergence of our new proposed iterative method under generalized relaxed \(\alpha \)-monotonicity is considered.

This is a preview of subscription content, access via your institution.

References

  1. Preda, V., Beldiman, M., Bătătorescu, A.: On variational-like inequalities with generalized monotone mappings. In: Generalized Convexity and Related Topics. Lecture Notes in Economics and Mathematical Systems, vol. 583, pp. 415–431. Springer, Berlin (2007)

  2. Fang, Y.P., Huang, N.J.: Variational-like inequalities with generalized monotone mappings in Banach spaces. J. Optim. Theory Appl. 118(2), 327–338 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bai, M.R., Zhou, S.Z., Ni, G.Y.: Variational-like inequalities with relaxed \(\eta -\alpha \) pseudomonotone mappings in Banach spaces. Appl. Math. Lett. 19(6), 547–554 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Onjai-uea, N., Kumam, P.: Existence and convergence theorems for the new system of generalized mixed variational inequalities in banach spaces. J. Inequal. Appl. 2012(1), 9 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Petrot, N., Wattanawitoon, K., Kumam, P.: A hybrid projection method for generalized mixed equilibrium problems and fixed point problems in Banach spaces. Nonlinear Anal. Hybrid Syst. 4(4), 631–643 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Saewan, S., Kumam, P.: A modified Mann iterative scheme by generalized f-projection for a countable family of relatively quasi-nonexpansive mappings and a system of generalized mixed equilibrium problems. Fixed Point Theory Appl. 2011(1), 1–21 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Saewan, S., Kumam, P.: Existence and algorithm for solving the system of mixed variational inequalities in Banach spaces. J. Appl. Math. 2012 (2012). doi:10.1155/2012/413468

  8. Saewan, S., Kumam, P.: A strong convergence theorem concerning a hybrid projection method for finding common fixed points of a countable family of relatively quasi-nonexpansive mappings. J. Nonlinear Convex Anal. 13(2), 313–330 (2012)

    MathSciNet  MATH  Google Scholar 

  9. Qin, X., Cho, Y.J., Kang, S.M.: Convergence theorems of common elements for equilibrium problems and fixed point problems in Banach spaces. J. Comput. Appl. Math. 225(1), 20–30 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Qin, X., Shang, M., Su, Y.: A general iterative method for equilibrium problems and fixed point problems in Hilbert spaces. Nonlinear Anal Theory Methods Appl 69(11), 3897–3909 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Takahashi, S., Takahashi, W.: Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces. J. Math. Anal. Appl. 331(1), 506–515 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Takahashi, W., Zembayashi, K.: Strong and weak convergence theorems for equilibrium problems and relatively nonexpansive mappings in Banach spaces. Nonlinear Anal. Theory Methods Appl. 70(1), 45–57 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chang, S., Lee, H.W.J., Chan, C.K.: A new method for solving equilibrium problem fixed point problem and variational inequality problem with application to optimization. Nonlinear Anal. Theory Methods Appl. 70(9), 3307–3319 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Plubtieng, S., Ungchittrakool, K.: Strong convergence theorems for a common fixed point of two relatively nonexpansive mappings in a Banach space. J. Approx. Theory 149(2), 103–115 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Zhang, S.: Generalized mixed equilibrium problem in Banach spaces. Appl. Math. Mech. 30(9), 1105–1112 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Saewan, S., Kumam, P.: A generalized f-projection method for countable families of weak relatively nonexpansive mappings and the system of generalized Ky fan inequalities. J. Glob. Optim. 56, 1–23 (2012)

    MathSciNet  MATH  Google Scholar 

  17. Ishikawa, S.: Fixed points by a new iteration method. Proc. Am. Math. Soc. 44(1), 147–150 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  18. Pettis, B.J.: A proof that every uniformly convex space is reflexive. Duke Math. J. 5(2), 249–253 (1939)

    Article  MathSciNet  MATH  Google Scholar 

  19. Cioranescu, I.: Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, vol. 62. Springer, Dordrecht (1990)

    Book  MATH  Google Scholar 

  20. Cioranescu, I.: Book review. Bull. Am. Math. Soc 26, 367–370 (1992)

    Article  Google Scholar 

  21. Alber, Y.I.: Metric and generalized projection operators in Banach spaces: properties and applications. Lecture Notes, Pure and Applied Mathematics, pp. 15–50. (1996)

  22. Takahashi, W.: Nonlinear Functional Analysis. Yokohama Publishers, Yokohama (2000)

    MATH  Google Scholar 

  23. Wu, K., Huang, N.: The generalised f-projection operator with an application. Bull. Aust. Math. Soc. 73(2), 307–318 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Fan, J., Liu, X., Li, J.: Iterative schemes for approximating solutions of generalized variational inequalities in banach spaces. Nonlinear Anal. Theory Methods Appl. 70(11), 3997–4007 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, X., Huang, N., O’Regan, D.: Strong convergence theorems for relatively nonexpansive mappings in Banach spaces with applications. Comput. Math. Appl. 60(5), 1322–1331 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Deimling, K.: Nonlinear Functional Analysis. Springer, Berlin (1985)

    Book  MATH  Google Scholar 

  27. Yang, F., Zhao, L., Kim, J.K.: Hybrid projection method for generalized mixed equilibrium problem and fixed point problem of infinite family of asymptotically quasi-\(\phi \)-nonexpansive mappings in banach spaces. Appl. Math. Comput. 218(10), 6072–6082 (2012)

    MathSciNet  MATH  Google Scholar 

  28. Kamimura, S., Takahashi, W.: Strong convergence of a proximal-type algorithm in a Banach space. SIAM J. Optim. 13(3), 938–945 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  29. Mahato, N.K., Nahak, C.: Hybrid projection methods for the general variational-like inequality problems. J. Adv. Math. Stud. 6(1), 143–158 (2013)

    MathSciNet  MATH  Google Scholar 

  30. Fan, K.: A minimax inequality and applications. Inequalities 3, 103–113 (1972)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nihar Kumar Mahato.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahato, N.K., Noor, M.A. & Sahu, N.K. Existence results for trifunction equilibrium problems and fixed point problems. Anal.Math.Phys. 9, 323–347 (2019). https://doi.org/10.1007/s13324-017-0199-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13324-017-0199-z

Keywords

Mathematics Subject Classification