Skip to main content
Log in

Radon transforms and Gegenbauer–Chebyshev integrals, II; examples

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

We transfer the results of Part I related to the modified support theorem and the kernel description of the hyperplane Radon transform to totally geodesic transforms on the sphere and the hyperbolic space, the spherical slice transform, and the spherical mean transform for spheres through the origin. The assumptions for functions are formulated in integral terms and close to minimal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. The inequality \(f \ne 0\) means that the set \(\{x\in {\mathbb R}^n: f (x)\ne 0\}\) has positive measure.

  2. This problem was solved after the present paper had been submitted. See Theorems 4.2, 5.2, 6.2, and 7.1 in [10].

References

  1. Abouelaz, A., Daher, R.: Sur la transformation de Radon de la sphère \(S^d\). Bull. Soc. Math. Fr. 121, 353–382 (1993)

    Article  MATH  Google Scholar 

  2. Berenstein, C.A., Casadio Tarabusi, E.: Range of the \(k\)-dimensional Radon transform in real hyperbolic spaces. Forum Math. 5, 603–616 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berenstein, C.A., Casadio Tarabusi, E., Kurusa, Á.: Radon transform on spaces of constant curvature. Proc. Am. Math. Soc. 125, 455–461 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berenstein, C.A., Rubin, B.: Radon transform of \(L^p\)-functions on the Lobachevsky space and hyperbolic wavelet transforms. Forum Math. 11, 567–590 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, Y.W.: On the solutions of the wave equation in a quadrant of \(\mathbb{R}^4\). Bull. Am. Math. Soc. 70, 172–177 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, Y.W.: On the solutions of the wave equation in the exterior of the characteristic cones. J. Math. Mech. 16, 655–673 (1967)

    MathSciNet  MATH  Google Scholar 

  7. Cormack, A.M.: Representation of a function by its line integrals, with some radiological applications. J. Appl. Phys. 34, 2722–2727 (1963)

    Article  MATH  Google Scholar 

  8. Cormack, A.M., Quinto, E.T.: A Radon transform on spheres through the origin in \(\mathbb{R}^{n}\) and applications to the Darboux equation. Trans. Am. Math. Soc. 260, 575–581 (1980)

    MathSciNet  MATH  Google Scholar 

  9. Courant, R., Hilbert, D.: Methods of mathematical physics. Vol. II. Partial differential equations. Interscience Publishers, New York (1962)

    MATH  Google Scholar 

  10. Estrada, R., Rubin, B.: Null spaces of Radon transforms. Adv. Math. 290, 1159–1182 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Funk, P.G.: Über Flächen mit lauter geschlossenen geodätischen Linien. Georg-August-Universitt Göttingen, Thesis (1911)

  12. Funk, P.G.: Über Flächen mit lauter geschlossenen geodätschen Linen. Math. Ann. 74, 278–300 (1913)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gel’fand, I.M., Gindikin, S.G., Graev, M.I.: Selected topics in integral geometry. Translations of mathematical monographs, AMS, Providence, Rhode Island (2003)

  14. Gel’fand, I.M., Graev, M.I., Vilenkin, NJa: Generalized functions, Vol 5, integral geometry and representation theory. Academic Press, Cambridge (1966)

    MATH  Google Scholar 

  15. Helgason, S.: Integral geometry and Radon transform. Springer, New York (2011)

    Book  MATH  Google Scholar 

  16. Kurusa, Á.: Support theorems for totally geodesic Radon transforms on constant curvature spaces. Proc. Am. Math. Soc. 122, 429–435 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ludwig, D.: The Radon transform on Euclidean space. Comm. Pure Appl. Math. 19, 49–81 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mikhlin, S.G.: Multidimensional singular integrals and integral equations. Pergamon Press, Oxford (1965)

    MATH  Google Scholar 

  19. Müller, C.: Spherical harmonics. Springer, Berlin (1966)

    Book  MATH  Google Scholar 

  20. Olevskii, M.N.: Quelques théorems de la moyenne dans les espaces à courbure constante. C.R. (Dokl.) Acad. Sci. URSS 45, 95–98 (1944)

    Google Scholar 

  21. Olevskii, M.N.: On the equation \(A_P u(P, t)=\left(\frac{\partial ^2}{\partial t^2} + p(t)\frac{\partial }{\partial t} + q(t) \right) u(P, t) \quad (A_P\) is a linear operator) and the solution of the Cauchy problem for the generalized equation of Euler-Darboux (In Russian). Dokl. AN SSSR 93, 975–978 (1953)

    Google Scholar 

  22. Palamodov, V.: Reconstructive Integral Geometry. Monographs in Mathematics, vol. 98. Birkhäuser Verlag, Basel (2004)

    Book  MATH  Google Scholar 

  23. Quinto, E.T.: Null spaces and ranges for the classical and spherical Radon transforms. J. Math. Anal. Appl. 90, 408–420 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  24. Quinto, E.T.: Singular value decompositions and inversion methods for the exterior Radon transform and a spherical transform. J. Math Anal. Appl. 95, 437–448 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  25. Quinto, E.T.: Helgason’s support theorem and spherical Radon transforms. In: Radon transforms, geometry, and wavelets, pp. 249–264, Contemp. Math. 464, Amer. Math. Soc., Providence, RI (2008)

  26. Rhee, H.: A representation of the solutions of the Darboux equation in odd-dimensional spaces. Trans. Am. Math. Soc. 150, 491–498 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  27. Rhee, H.: Expression for a function in terms of its spherical means. Bull. Am. Math. Soc. 76, 626–628 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  28. Rubin, B.: Reconstruction of functions from their integrals over \(k\)-dimensional planes. Israel J. Math. 141, 93–117 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Rubin, B.: On the Funk-Radon-Helgason inversion method in integral geometry. Contemp. Math. 599, 175–198 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Rubin, B.: Gegenbauer-Chebyshev Integrals and Radon Transforms, I. Submitted to this journal

  31. Solmon, D.C.: Asymptotic formulas for the dual Radon transform and applications. Math. Z. 195, 321–343 (1987)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

I am grateful to Emily Ribando-Gros for figures in this paper. She was supported by the NSF VIGRE program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Rubin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rubin, B. Radon transforms and Gegenbauer–Chebyshev integrals, II; examples. Anal.Math.Phys. 7, 349–375 (2017). https://doi.org/10.1007/s13324-016-0145-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13324-016-0145-5

Keywords

Mathematics Subject Classification

Navigation