Analysis and Mathematical Physics

, Volume 4, Issue 3, pp 199–220 | Cite as

On a reconstruction formula for spherical Radon transform: a microlocal analytic point of view

  • Linh V. Nguyen


Let \(\mathcal R \) be the restriction of the spherical Radon transform to the set of spheres centered on a hypersurface \(\mathcal S \). We study the construction of a function \(f\) from \(\mathcal R (f)\) by a closed-form formula. We approach the problem by studying an oscillatory integral, which depends on the observation surface \(\mathcal S \) as a parameter. We then derive various microlocal analytic properties of the associated closed-form reconstruction formula.



The author is thankful to Professor P. Stefanov for his critical comments to the preliminary version of the article. The author is also thankful to the referee for many helpful comments and suggestions.


  1. 1.
    Ambartsoumian, G., Zarrad, R. G., Lewis, M. A.: Inversion of the circular radon transform on an annulus. Inverse Probl. 26(10):11, 105015 (2010)Google Scholar
  2. 2.
    Beltukov, A.: Inversion of the spherical mean transform with sources on a hyperplane. ArXiv e-prints, (2009)Google Scholar
  3. 3.
    Beylkin, G.: The inversion problem and applications of the generalized Radon transform. Comm. Pure Appl. Math. 37(5), 579–599 (1984)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Buhgeĭm, A. L., Kardakov, V. B.: Solution of an inverse problem for an elastic wave equation by the method of spherical means. Sibirsk. Mat. Ž., 19(4):749–758, 953 (1978)Google Scholar
  5. 5.
    Cheney, M.: Tomography problems arising in synthetic aperture radar. In: Radon transforms and tomography (South Hadley, MA, 2000). Contemp. Math., vol. 278, pp. 15–27. Amer. Math. Soc., Providence (2001)Google Scholar
  6. 6.
    Finch, D., Haltmeier, M., Rakesh.: Inversion of spherical means and the wave equation in even dimensions. SIAM J. Appl. Math. 68(2):392–412 (2007)Google Scholar
  7. 7.
    Finch, D., Patch, S.K., Rakesh. : Determining a function from its mean values over a family of spheres. SIAM J. Math. Anal. 35(5):1213–1240 (2004) (electronic)Google Scholar
  8. 8.
    Haltmeier, M., Scherzer, O., Zangerl, G.: A reconstruction algorithm for photoacoustic imaging based on the nonuniform fft. IEEE Trans Med. Imaging 28(11), 1727–1735 (2009)CrossRefGoogle Scholar
  9. 9.
    Haltmeier, M.: Universal inversion formulas for recovering a function from spherical means. ArXiv e-prints, June (2012)Google Scholar
  10. 10.
    Hörmander, L.: The analysis of linear partial differential operators. I. Classics in Mathematics. Distribution theory and Fourier analysis, Springer-Verlag, Berlin (2003). Reprint of the second (1990) edition [Springer, Berlin; MR1065993 (91m:35001a)]Google Scholar
  11. 11.
    Hörmander, L.: Fourier integral operators. I. Acta Math. 127(1–2), 79–183 (1971)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Kuchment, P., Kunyansky, L.: Mathematics of thermoacoustic and photoacoustic tomography, Handbook of Mathematical Methods in Imaging, chap 19, vol. 2, pp. 817–866. Springer, Berlin (2010)Google Scholar
  13. 13.
    Kuchment, P., Kunyansky, L.: Mathematics of thermoacoustic tomography. Eur J. Appl. Math. 19(2), 191–224 (2008)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Kunyansky, L.: Reconstruction of a function from its spherical (circular) means with the centers lying on the surface of certain polygons and polyhedra. Inverse Probl. 27(2):22, 025012 (2011)Google Scholar
  15. 15.
    Kunyansky, L.A.: Explicit inversion formulae for the spherical mean Radon transform. Inverse Probl. 23(1), 373–383 (2007)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Louis, AK., Quinto, E.T.: Local tomographic methods in sonar. In: Surveys on solution methods for inverse problems, pp. 147–154. Springer, Vienna (2000)Google Scholar
  17. 17.
    Narayanan, E. K., Rakesh.: Spherical means with centers on a hyperplane in even dimensions. Inverse Probl. 26(3):12, 035014 (2010)Google Scholar
  18. 18.
    Natterer, F.: Photo-acoustic inversion in convex domains. Inverse Probl Imaging (2012)Google Scholar
  19. 19.
    Nguyen, L.V.: A family of inversion formulas in thermoacoustic tomography. Inverse Probl. Imaging 3(4), 649–675 (2009)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Nolan, C.J., Cheney, M.: Microlocal analysis of synthetic aperture radar imaging. J. Fourier Anal. Appl. 10(2), 133–148 (2004)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Norton, S.J., Linzer, M.: Ultrasonic reflectivity tomography: reconstruction with circular transducer arrays. Ultrasonic Imaging 1(2), 154–184 (1979)CrossRefGoogle Scholar
  22. 22.
    Norton, S.J.: Reconstruction of a two-dimensional reflecting medium over a circular domain: Exact solution. J. Acoust Soc. Am. 67, 1266 (1980)CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Norton, S.J.: Reconstruction of a reflectivity field from line integrals over circular paths. J. Acoust. Soc. Am. 67(3), 853–863 (1980)CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Norton, S.J., Linzer, M.: Ultrasonic reflectivity imaging in three dimensions: exact inverse scattering solutions for plane, cylindrical, and spherical apertures. IEEE Trans Biomed Eng 2, 202–220 (1981)CrossRefGoogle Scholar
  25. 25.
    Palamodov, V.P.: A uniform reconstruction formula in integral geometry. 28(6):15, 065014 (2012)Google Scholar
  26. 26.
    Palamodov, V.P.: Reconstruction from limited data of arc means. J. Fourier Anal. Appl. 6(1), 25–42 (2000)CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    Palamodov, V.: Remarks on the general Funk transform and thermoacoustic tomography. Inverse Probl. Imaging 4(4), 693–702 (2010)Google Scholar
  28. 28.
    Quinto, E.T., Rieder, A., Schuster, T.: Local inversion of the sonar transform regularized by the approximate inverse. Inverse Probl. 27(3):18, 035006 (2011)Google Scholar
  29. 29.
    Quinto, E. T.: Support theorems for the spherical Radon transform on manifolds. Int. Math. Res. Not., pages Art. ID 67205, 17 (2006)Google Scholar
  30. 30.
    Salman, Y.: An inversion formula for the spherical mean transform with data on an ellipsoid in two and three dimensions. ArXiv e-prints, August (2012)Google Scholar
  31. 31.
    Shubin, M. A.: Pseudodifferential operators and spectral theory. Springer-Verlag, Berlin, 2nd edn. (2001) (Translated from the 1978 Russian original by Stig I. Andersson)Google Scholar
  32. 32.
    Sogge, C.D.: Fourier integrals in classical analysis, volume 105 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (1993)CrossRefGoogle Scholar
  33. 33.
    Stefanov, P., Uhlmann, G.: Is a curved flight path in SAR better than a straight one? ArXiv e-prints, (2012)Google Scholar
  34. 34.
    Stein E.M., Weiss, G.: Introduction to Fourier analysis on Euclidean spaces. Princeton University Press, Princeton (1971) (Princeton Mathematical Series, No. 32.)Google Scholar
  35. 35.
    Treves, F.: Introduction to pseudodifferential and Fourier integral operators. vol. 1. Plenum Press, New York, (1980) (Pseudodifferential operators, The University Series in Mathematics)Google Scholar
  36. 36.
    Xu, M., Wang, L. V.: Universal back-projection algorithm for photoacoustic computed tomography. Physical Rev E, 71 (2005)Google Scholar
  37. 37.
    Xu, Y., Wang, L.V., Ambartsoumian, G., Kuchment, P.: Reconstructions in limited-view thermoacoustic tomography. Med. Phys. 31, 724 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of IdahoMoscowUSA

Personalised recommendations