Skip to main content
Log in

Metric properties in the mean of polynomials on compact isotropy irreducible homogeneous spaces

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

Let \(M=G/H\) be a compact connected isotropy irreducible Riemannian homogeneous manifold, where \(G\) is a compact Lie group (may be, disconnected) acting on \(M\) by isometries. This class includes all compact irreducible Riemannian symmetric spaces and, for example, the tori \(\mathbb{R }^n/\mathbb{Z }^n\) with the natural action on itself extended by the finite group generated by all permutations of the coordinates and inversions in circle factors. We say that \(u\) is a polynomial on \(M\) if it belongs to some \(G\)-invariant finite dimensional subspace \(\mathcal{E }\) of \(L^2(M)\). We compute or estimate from above the averages over the unit sphere \(\mathcal{S }\) in \(\mathcal{E }\) for some metric quantities such as Hausdorff measures of level set and norms in \(L^p(M)\), \(1\le p\le \infty \), where \(M\) is equipped with the invariant probability measure. For example, the averages over \(\mathcal{S }\) of \(\Vert u\Vert _{L^p(M)}\), \(p\ge 2\), are less than \(\sqrt{\frac{p+1}{e}}\) independently of \(M\) and \(\mathcal{E }\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The action is effective if its kernel is trivial and virtually effective if it is finite. The kernel of the action consists of those \(g\in G\) which define the identical transformation of \(M\).

  2. The two-sheeted expanding covering \(z\rightarrow z^2\) of the unit circle \(\mathbb{T }\) in \(\mathbb{C }\) is a simple example of a non-global local homothety.

  3. we assume that the action of \(G\) is virtually effective; see the footnote on page .

References

  1. Bateman, H., Erdélyi, A.: Higher transcendental functions, vol. 2. MC Graw-Hill Book Company, New York, London (1953)

  2. Bierstone, E., Milman, P.: Semianalytic and subanalytic sets. IHES Publ. Math. 67, 5–42 (1988)

    MathSciNet  MATH  Google Scholar 

  3. Berard P.: Volume des ensembles nodaux des fonctions propres du Laplacien. In: Séminaire Bony-Sjöstrand-Meyer, Ecole Polytechnique, pp. 1984–1985. Exposé no XIV

  4. Bloch, A., Polya, G.: On the Zeros of certain algebraic equations. Proc. London Math. Soc. 33, 102–114 (1932)

    Article  MathSciNet  Google Scholar 

  5. Bogomolny, E., Bohigas, O., Leboeuf, P.: Quantum chaotic dynamics and random polynomials. J. Statist. Phys. 85(5–6), 639–679 (1996)

    Google Scholar 

  6. Bochnak, J., Coste, M., Roy, M.-F.: Real Algebraic Geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3, Folge A Modern Surveys in Mathmatics, 36. Springer-Verlag, Berlin (1998)

    Google Scholar 

  7. Courant, R., Hilbert, D.: Methoden der Mathematischen Physik. Verlag von Julius Springer, Berlin (1931)

    Book  Google Scholar 

  8. Edelman, A., Kostlan, E.: How many zeros of a random polynomial are real? Bull. Am. Math. Soc. 32, 1–37 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. Federer, H.: Geometric Measure Theory. Springer, Berlin (1969)

    MATH  Google Scholar 

  10. Gichev, V.M.: A note on common zeroes of Laplace-Beltrami eigenfunctions. Ann. Global Anal. Geom. 26, 201–208 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gichev V.M.: Some remarks on spherical harmonics. St. Petersburg Math. J. 20 (2009), 553–567. (Original publication: Algebra i Analiz, tom 20 (2008), nomer 4 (Russian))

  12. Granville, A., Wigman, I.: The distribution of the zeros of random trigonometric polynomials. Am. J. Math. 133(2), 295–357 (April 2011)

  13. Heintze, E., Ziller, W.: Isotropy irreducible spaces and s-representations. Diff. Geom. Appl. 6(2), 181–188 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jakobson D., Nadirashvili N., Toth J.: Geometric properties of eigenfunctions. (English. Russian original). Russ. Math. Surv. 56, No. 6, 1085–1105 (2001); translation from Usp. Mat. Nauk 56, No. 6, 67–88 (2001)

  15. Kac, M.: On the average number of real roots of a random algebraic equation. Bull. Am. Math. Soc. 49, 314–320 (1943)

    Article  MATH  Google Scholar 

  16. Kahane, J.-P.: Some Random Series of Fuctions. D.C. Heath and company, Lexington (1968)

    Google Scholar 

  17. Krämer, M.: Eine Klassifikation bestimmter Untergruppen kompakter zusammenhiingender Liegruppen. Comm. Algebra 3, 691–737 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ledoux, M.: The concentration of measure phenomenon. Mathematical Surveys Monograph 89. American Mathematical Society, Providence, RI (2001)

  19. Littlewood, J.E., Offord, A.C.: On the number of real roots of a random algebraic equation. J. London Math. Soc. 13, 288–295 (1938)

    Article  Google Scholar 

  20. Littlewood, J.E., Offord, A.C.: On the number of real roots of a random algebraic equation II. Proc. Cambridge Philos. Soc. 35, 133–148 (1939)

    Article  MATH  Google Scholar 

  21. Manturov, O.V.: Homogeneous asymmetric Riemannian spaces with an irreducible group of motions. Dokl. Akad. Nauk SSSR 141, 792–795 (1961)

    MathSciNet  Google Scholar 

  22. Manturov, O.V.: Riemannian spaces with orthogonal and symplectic groups of motions and an irreducible group of rotations. Dokl. Akad. Nauk. SSSR 141, 1034–1037 (1961)

    Google Scholar 

  23. Manturov, O.V.: Homogeneous Riemannian manifolds with irreducible isotropy group. Trudy Sem. Vector. Tenzor. Anal. 13, 68–145 (1966)

    MathSciNet  Google Scholar 

  24. Marinucci, D., Wigman, I.: On the area of excursion sets of spherical Gaussian eigenfunctions. J. Math. Phys. 52, 093301. doi:10.1063/1.3624746 (2011)

  25. Marinucci, D., Wigman, I.: The defect variance of random spherical harmonics. J. Phys. A. Math. Theor. 44, No. 35, Article ID 355206, 16 p. arXiv: physics. math-ph. 1103.0232 (2011)

  26. Milnor, J.W.: Morse Theory, Annals Math. Study 51, Princeton University Press, Princeton (1963)

  27. Neuheisel, J.: The asymptotic distribution of nodal sets on spheres, Johns Hopkins Ph.D. thesis (2000)

  28. Oravecz, F., Rudnick, Z., Wigman, I.: The Leray measure of nodal sets for random eigenfunctions on the torus. Annales de linstitut Fourier 58(1), 299–335 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Palais, R.S., Terng, C.-L.: Critical point theory and submanifold geometry. Lecture Notes in Mathematics 1353. Springer-Verlag, Berlin, New York (1988)

  30. Paley, R.E., Wiener, N., Zygmund, Z.: Notes on random functions. Math. Z. 37, 647–68 (1932)

    Article  Google Scholar 

  31. Qualls, C.: On the number of zeros of a stationary Gaussian random trigonometric polynomial. J. London Math. Soc. 2, 216–220 (1970)

    Google Scholar 

  32. Rudnick, Z., Wigman, I.: On the volume of nodal sets for eigenfunctions of the Laplacian on the torus. Ann. Henri Poincare 9(1), 109–130 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. Salem, R., Zygmund, A.: Some properties of trigonometric series whose terms have random signs. Acta Math. 91, 254–301 (1954)

    Article  MathSciNet  Google Scholar 

  34. Shiffman, B., Zelditch, S.: Random polynomials of high degree and Levy concentration of measure. Asian J. Math. 7(4), 627646 (2003)

    MathSciNet  Google Scholar 

  35. Sogge, C.D.: Oscillatory integrals and spherical harmonics. Duke Math. J. 53, 43–65 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  36. Sogge, C.D.: Concerning the \(L^p\) norm of spectral clusters for second-order elliptic operators on compact manifolds. J. Funct. Anal. 77, 123–138 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  37. Sogge, C.D., Zeldich, S.: Concerning the \(L^4\) norms of typical eigenfunctions on compact surfaces, ArXiv:1011.0215 [math.AP]

  38. Wang, M., Ziller, W.: On isotropy irreducible Riemannian manifolds. Acta Math. 166, 223–261 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  39. Wigman, I.: On the distribution of the nodal sets of random spherical harmonics. J. Math. Phys. 50, 013521. doi:10.1063/1.3056589 (2009)

  40. Wigman I.: Fluctuations of the nodal length of random spherical harmonics. Comm. Math. Phys. 298(3) 787–831. Fluctuations of the Nodal Length of Random Spherical Harmonics, erratum, arXiv: math. 0907.1648 (2010)

  41. Wolf, J.A.: The geometry and structure of isotropy irreducible homogeneous spaces. Acta Math. 120, 59–148 (1968); correction: Acta Math. 152, 141–142 (1984)

    Google Scholar 

  42. Zelditch, S.: Local and global analysis of eigenfunctions on Riemannian manifolds. In: Ji, L., et al. (ed.) Handbook of Geometric Analysis, 1. International Press, Somerville; Beijing: Higher Education Press. Advanced Lectures in Mathematics (ALM) 7, 545–658 (2008). arXiv:0903.3420v1 [math.AP]

  43. Zelditch S., Eigenfunctions and nodal sets, arXiv:1205.2812 [math.SP] (2012)

  44. Zygmund, A.: On Fourier coefficients and transforms of two variables. Studia Math. 50, 189–201 (1974)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Gichev.

Additional information

Part of the work was done during my stay in the Institut Mittag-Leffler (Djursholm, Sweden), 2011 fall. I thank the Institute for support and hospitality.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gichev, V.M. Metric properties in the mean of polynomials on compact isotropy irreducible homogeneous spaces. Anal.Math.Phys. 3, 119–144 (2013). https://doi.org/10.1007/s13324-012-0051-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13324-012-0051-4

Keywords

Navigation