Skip to main content
Log in

Sub-Riemannian geodesics and heat operator on odd dimensional spheres

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

In this article we study the sub-Riemannian geometry of the spheres S 2n+1 and S 4n+3, arising from the principal S 1-bundle structure defined by the Hopf map and the principal S 3-bundle structure given by the quaternionic Hopf map, respectively. The S 1 action leads to the classical contact geometry of S 2n+1, while the S 3 action gives another type of sub-Riemannian structure, with a distribution of corank 3. In both cases the metric is given as the restriction of the usual Riemannian metric on the respective horizontal distributions. For the contact S 7 case, we give an explicit form of the intrinsic sub-Laplacian and obtain a commutation relation between the sub-Riemannian heat operator and the heat operator in the vertical direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agrachev A., Boscain U., Gauthier J.-P., Rossi F.: The intrinsic hypoelliptic Laplacian and its heat kernel on unimodular Lie groups. J. Funct. Anal. 256(8), 2621–2655 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Agrachev A., Sachkov Y.: Control Theory from the Geometric Viewpoint. Springer, Berlin (2004)

    MATH  Google Scholar 

  3. Alekseevsky D., Kamishima Y.: Pseudo-conformal quaternionic CR structure on (4n+3)-dimensional manifolds. Ann. Mat. Pura Appl. (4) 187(3), 487–529 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Baudoin F., Bonnefont M.: The subelliptic heat kernel on SU(2): representations, asymptotics and gradient bounds. Math. Z. 263(3), 647–672 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Calin, O., Chang, D.-C., Greiner, P.: Geometric analysis on the Heisenberg group and its generalizations. AMS/IP Studies in Advanced Mathematics, vol. 40. American Mathematical Society, Providence; International Press, Somerville (2007)

  6. Calin O., Chang D.-C., Markina I.: SubRiemannian geometry on the sphere \({\mathbb{S}^3}\). Canad. J. Math. 61(4), 721–739 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Calin O., Chang D.-C., Markina I.: Geometric analysis on H-type groups related to division algebras. Math. Nachr. 282(1), 44–68 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Capogna L., Danielli D., Pauls S.D., Tyson J.: An introduction to the Heisenberg group and the sub-Riemannian isoperimetric problem. Progress in Mathematics, vol. 259. Birkhäuser, Basel (2007)

    Google Scholar 

  9. Chang D.-C., Markina I.: Geometric analysis on quaternion \({\mathbb{H}}\)-type groups. J. Geom. Anal. 16(2), 265–294 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chang D.-C., Markina I., Vasil’ev A.: Sub-Riemannian geodesics on the 3-D sphere. Complex Anal. Oper. Theory 3(2), 361–377 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chang D.-C., Markina I., Vasil’ev A.: Hopf fibration: geodesics and distances. J. Geom. Phys. 61(6), 986–1000 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cheeger J., Ebin D.G.: Comparison Theorems in Riemannian Geometry. AMS Chelsea Publishing, Providence (2008)

    MATH  Google Scholar 

  13. Chow W.-L.: Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung (German). Math. Ann. 117, 98–105 (1939)

    Article  MathSciNet  Google Scholar 

  14. do Carmo, M.: Riemannian geometry. Translated from the second Portuguese edition by Francis Flaherty. Mathematics: Theory & Applications. Birkhäuser Boston, Boston (1992)

  15. Godoy M., Markina I.: Sub-Riemannian geometry of parallelizable spheres. Revista Matemática Iberoamericana. 27(3), 997–1022 (2011)

    Article  MATH  Google Scholar 

  16. Gromov, M.: Carnot–Carathéodory spaces seen from within. In: Sub-Riemannian Geometry. Progress in Mathematics, vol. 144, pp. 79–323. Birkhäuser, Basel (1996)

  17. Hurtado A., Rosales C.: Area-stationary surfaces inside the sub-Riemannian three-sphere. Math. Ann. 340(3), 675–708 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, vol. I. Reprint of the 1969 original. Wiley, New York (1996)

  19. Liu, W., Sussmann, H.J.: Shortest paths for sub-Riemannian metrics on rank-two distributions. Mem. Am. Math. Soc. 118(564) (1995)

  20. Margulis G., Mostow G.: Some remarks on the definition of tangent cones in a Carnot–Carathéodory space. J. Anal. Math. 80, 299–317 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mitchell J.: On Carnot–Carathéodory metrics. J. Diff. Geom. 21, 35–45 (1985)

    MATH  Google Scholar 

  22. Montgomery R.: A tour of subriemannian geometries, their geodesics and applications. Mathematical Surveys and Monographs, vol. 91. American Mathematical Society, Providence (2002)

    Google Scholar 

  23. Rashevskiĭ P.K.: About connecting two points of complete nonholonomic space by admissible curve. Uch. Zapiski Ped. Inst. K. Liebknecht 2, 83–94 (1938)

    Google Scholar 

  24. Ritoré M., Rosales C.: Area-stationary surfaces in the Heisenberg group \({\mathbb{H}^1}\). Adv. Math. 219(2), 633–671 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Rosenberg S.: The Laplacian on a Riemannian manifold. An introduction to analysis on manifolds. London Mathematical Society Student Texts, vol. 31. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  26. Sternberg, S.: Semi-Riemannian Geometry and General Relativity. http://www.math.harvard.edu/~shlomo/docs/semi_riemannian_geometry.pdf

  27. Sussmann H.: Orbits of families of vector fields and integrability of distributions. Trans. Am. Math. Soc. 180, 171–188 (1973)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina Markina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Godoy Molina, M., Markina, I. Sub-Riemannian geodesics and heat operator on odd dimensional spheres. Anal.Math.Phys. 2, 123–147 (2012). https://doi.org/10.1007/s13324-012-0028-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13324-012-0028-3

Keywords

Mathematics Subject Classification (2000)

Navigation