Abstract
The paper discusses sharp sufficient conditions for interpolation and sampling for functions of n variables with convex spectrum. When n = 1, the classical theorems of Ingham and Beurling state that the critical values in the estimates from above (from below) for the distances between interpolation (sampling) nodes are the same. This is no longer true for n > 1. While the critical value for sampling sets remains constant, the one for interpolation grows linearly with the dimension.
Similar content being viewed by others
References
Baiocchi C., Komornik V., Loreti P.: Théorèmes du type Ingham et application á la thèorie du contrôle. C. R. Acad. Sci. Paris Sér. I Math. 326(4), 453–458 (1998)
Benedetto, J.J., Wu, H.-Ch.: Non-uniform sampling and spiral MRI reconstruction. In: SPIE-Wavelet Applications in Signal and Image Processing VIII, vol. 4119, pp. 130–141 (2000)
Beurling, A.: Interpolation for an interval in \({\mathbb{R}^1}\) . In: The collected Works of Arne Beurling. Harmonic Analysis, vol. 2. Birkhauser, Boston (1989)
Beurling, A.: Balayage of Fourier–Stieltjes transforms. In: The collected Works of Arne Beurling. Harmonic Analysis, vol. 2. Birkhauser, Boston (1989)
Beurling, A.: Local Harmonic Analysis with some Applications to Differential Operators. In: The collected Works of Arne Beurling. Harmonic Analysis, vol. 2. Birkhauser, Boston (1989)
Bezuglaya L., Katsnelson V.: The sampling theorem for functions with limited multi-band spectrum. Z. Anal. Anwendungen 12(3), 511–534 (1993)
Cassels J.W.S.: An Introduction to the Geometry of Numbers. Springer, Berlin (1971)
Clunie J., Rahman Q.I., Walker W.J.: On entire functions of exponential type bounded on the real axis. J. Lond. Math. Soc. (2) 61(1), 163–176 (2000)
Duffin R.J., Schaeffer A.C.: Some properties of functions of exponential type. Bull. Am. Math. Soc. 44, 236–240 (1938)
Higgins J.R.: Sampling Theory in Fourier and Signal Analysis. Foundations. Clarendon Press, Oxford (1996)
Hörmander L.: Some inequalities for functions of exponential type. Math. Scand. 3, 21–27 (1955)
Ingham A.E.: Some trigonometrical inequalities with applications in the theory of series. Math. Z. 41, 367–379 (1936)
Kahane J.-P.: Sur les fonctions moyenne-périodiques bornées. Ann. Inst. Fourier 7, 293–314 (1957)
Kahane, J.-P.: Fonctions pseudo-périodiques dans \({\mathbb{R}^{p}}\) (French). In: Proc. Internat. Sympos. Linear Spaces (Jerusalem, 1960), pp. 274–281. Jerusalem Academic Press/Pergamon, Jerusalem/Oxford (1961)
Kahane J.-P.: Pseudopériodicité et séries de Fourier lacunaires. Ann. Sci. Ecole Norm. Sup. 79, 93–150 (1962)
Komornik V., Loreti P.: Fourier series in control theory. Springer Monographs in Mathematics. Springer, Berlin (2005)
Landau H.J.: A sparse regular sequence of exponentials closed on large sets. Bull. Am. Math. Soc. 70, 566–569 (1964)
Landau H.J.: Necessary density conditions for sampling and interpolation of certain entire functions. Acta Math. 117, 37–52 (1967)
Levin B.Ya.: Lectures on Entire Functions. AMS, Providence (1996)
Lyubarskii Yu., Rashkovskii A.: Complete interpolating sequences for Fourier transforms supported by convex symmetric polygons. Ark. Mat. 38(1), 139–170 (2000)
Matei B., Meyer Y.: Quasicrystals are sets of stable sampling. C. R. Math. Acad. Sci. Paris 346(23–24), 1235–1238 (2008)
Matei B., Meyer Y.: A variant of compressed sensing. Rev. Mat. Iberoam 25(2), 669–692 (2009)
Matei B., Meyer Y.: Simple quasicrystals are sets of stable sampling. Complex Var. Elliptic Equ. 55(8–10), 947–964 (2010)
Olevskii A., Ulanovskii A.: Universal sampling of band-limited signals. C. R. Math. Acad. Sci. Paris 342(12), 927–931 (2006)
Olevskii A., Ulanovskii A.: Universal sampling and interpolation of band-limited signals. Geom. Funct. Anal. 18(3), 1029–1052 (2008)
Olevskii A., Ulanovskii A.: On Ingham-type interpolation in \({\mathbb{R}^n}\) . C. R. Math. Acad. Sci. Paris 348(13–14), 807–810 (2010)
Rogers C.A.: Packing and Covering. Cambridge University Press, Cambridge (2008)
Seip, K.: Interpolation and sampling in spaces of analytic functions. In: University Lecture Series, vol. 33. American Mathematical Society, Providence (2004)
Stein E., Weiss G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press, Princeton (1987)
Ulanovskii A.: Sparse systems of functions closed on large sets in \({\mathbf{R}^N}\) . J. Lond. Math. Soc. (2) 63(2), 428–440 (2001)
Young R.M.: An Introduction to Nonharmonic Fourier Series. Academic Press, London (2001)
Author information
Authors and Affiliations
Corresponding author
Additional information
A. Olevskii is supported in part by the Israel Science Foundation and A. Ulanovskii is supported by an ESF-HCAA grant.
Rights and permissions
About this article
Cite this article
Olevskii, A., Ulanovskii, A. On multi-dimensional sampling and interpolation. Anal.Math.Phys. 2, 149–170 (2012). https://doi.org/10.1007/s13324-012-0027-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13324-012-0027-4