Skip to main content
Log in

Remarks on the Bohr and Rogosinski phenomena for power series

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

The following problems are discussed in this work.

  1. 1.

    Asymptotics of the majorant function in the Reinhardt domains in \({\mathbb C^n}\).

  1. 2.

    The Bohr and Rogosinski radii for Hardy classes of functions holomorphic in the disk.

  1. 3.

    Neither Bohr nor Rogosinski radius exists for functions holomorphic in an annulus, with natural basis.

  1. 4.

    The Bohr and Rogosinski radii for the mappings of the Reinhardt domains into Reinhardt domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aizenberg L.: Multidimensional analogs of Bohr’s theorem on power series. Proc. Am. Math. Soc 128, 1147–1155 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aizenberg L.: Bohr theorem. In: Hazenwinkel, M. (eds) Encyclopedia of Mathematics, Supplement II., pp. 1147–1155. Kluwer, Dordrecht (2000)

    Google Scholar 

  3. Aizenberg L.: A generalization of Caratheodory inequality and the Bohr radius for multdimensional power series. Oper. Theory Adv. Appl. 158, 87–94 (2005)

    Article  MathSciNet  Google Scholar 

  4. Aizenberg L.: Generalization of results about the Bohr radius for power series. Stud. Math. 180(2), 161–168 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Aizenberg L., Aytuna A., Djakov P.: An abstract approach to Bohr’s phenomenon. Proc. Am. Math. Soc. 128, 2611–2619 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Aizenberg L., Aytuna A., Djakov P.: Generalization of Bohr’s theorem for bases in spaces of holomorphic functions of several complex variables. J. Math. Anal. Appl. 258, 428–447 (2001)

    Article  MathSciNet  Google Scholar 

  7. Aizenberg L., Gotlieb V., Vidras A.: Bohr and Rogosinskii abscissas for ordinary Dirichlet series. Comput. Methods Funct. Theory 9(1), 65–74 (2009)

    MathSciNet  MATH  Google Scholar 

  8. Aizenberg, L., Grossman, I.B., Korobeinnik, Yu.F: Some remarks on Bohr radius. Isv. Vysh. Ucheb. Zav. Mat. 10, 3–10 (2002, in Russian)

    Google Scholar 

  9. Aizenberg L., Elin M., Shoikhet D.: On the Rogosinski radius for holomorphic mappings and some of its applications. Stud. Math. 168(2), 147–158 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Aizenberg L., Liflyand E., Vidras A.: Multidimensional analogue of the van der Corput-Visser inequality and its application to the estimation of Bohr radius. Anal. Pol. Math. 80, 47–54 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Aizenberg L., Tarkhanov N.: A Bohr phenomenon for elliptic equation. Proc. Lond. Math. Soc. (3) 82(2), 385–401 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Aizenberg, L., Vidras, A.: On the Bohr radius od two classes of holomorphic functions. Siber. Math. J. 45(4), 609-617 (2004, in Russian)

    Google Scholar 

  13. Bénéteau C., Dalhner A., Khavinson D.: Remarks on the Bohr phenomena. Comput. Methods Funct. Theory 4, 5–15 (2004)

    Google Scholar 

  14. Bénéteau C., Korenblum B.: Some coefficient estimates fot H p functions and a conjecture of Hummel, Scheinberg and Zalcman. Contemp. Math. 364, 5–14 (2004)

    Article  Google Scholar 

  15. Boas H.P.: Majorant series. J. Korean Math. Soc. 37, 321–337 (2000)

    MathSciNet  MATH  Google Scholar 

  16. Boas H.P., Khavinson D.: Bohr’s power series theorem in several variables. Proc. Am. Math. Soc. 125, 2975–2979 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bohr H.: A theorem concerning power series. Proc. Lond. Math. Soc. (2) 13, 1–5 (1914)

    Article  MathSciNet  MATH  Google Scholar 

  18. Bombieri E., Bourgain J.: A remark on Bohr’s inequality. Int. Math. Res. Not. 80, 4307–4330 (2004)

    Article  MathSciNet  Google Scholar 

  19. Defant A., Frerick L.: A logarothmic lower bound for multidimensional Bhor radii. Isr. J. Math. 152, 17–28 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Defant, A., Frerick, L., Ortega-Cerdá, J., Ounaies, M., Seip, K.: The Bohnenblust-Hille inequality for homogeneous polynomials is hypercontractive. Preprint (2009)

  21. Defant A., Garsía D., Maestre M.: Bohr’s power series theorem and local Banach space theory. J. Reine Angew. Math. 557, 173–197 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Defant A., Garsía D., Maestre M.: Estimates for the first and second Bohr radii of Reinhardt domains. Approx. Theory 128, 53–68 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Dineen S., Timoney R.: Absolute bases, tensor products and a theorem of Bohr. Stud. Math. 94, 227–234 (1989)

    MathSciNet  MATH  Google Scholar 

  24. Djakov P., Ramanujan N.S.: A remark on Bohr’s theorem and its generalizations. J. Anal. 8, 65–77 (2000)

    MathSciNet  MATH  Google Scholar 

  25. Kresin G., Mazya V.: Sharp Real-Part Theorems. A Unified Approach. Springer, Berlin (2007)

    MATH  Google Scholar 

  26. Landau E., Gaier D.: Darstellung und Begründung eininger neurer Ergebnisse der Funktiontheorie. Springer, Berlin (1986)

    Book  Google Scholar 

  27. Nabatani K.: Remarks on some theorems conserning section of a power series. Tôhoku Math. J. 41, 333–336 (1936)

    Google Scholar 

  28. Paulsen V.I., Popesecu G., Singh D.: On Bohr’s inequality. Proc. Lond. Math. Soc. (3) 85, 493–512 (2002)

    Article  MATH  Google Scholar 

  29. Paulsen V.I., Singh D.: Extensions of Bohr’s inequality. Bull. Lond. Math. Soc. 38, 991–999 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. Rogosinski W.: Über Bildschranken bei Potenzreihen und ihren Abschkitten. Math. Z. 17, 260–276 (1923)

    Article  MathSciNet  Google Scholar 

  31. Sidon S.: Über einen Satz von Herr Bohr. Math. Z. 26, 731–732 (1927)

    Article  MathSciNet  MATH  Google Scholar 

  32. So-mo U.: Some properties of functions which are analytic in a circle. Adv. Math. 3, 250–256 (1957)

    Google Scholar 

  33. Tomiĉ M.: Sur une théorém de H. Bohr. Math. Scand. 11, 103–106 (1963)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lev Aizenberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aizenberg, L. Remarks on the Bohr and Rogosinski phenomena for power series. Anal.Math.Phys. 2, 69–78 (2012). https://doi.org/10.1007/s13324-012-0024-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13324-012-0024-7

Mathematics Subject Classification (2000)

Navigation