Skip to main content
Log in

Geometry of spectral pairs

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper we develop a geometric framework for spectral pairs and for orthogonal families of complex exponentials in L 2(μ), where μ is a given Borel probability measure supported in \({\mathbb {R}^{d}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Billingsley, P.: Probability and measure. Wiley, New York. Wiley Series in Probability and Mathematical Statistics (1979)

  2. Bohnstengel J., Kesseböhmer M.: Wavelets for iterated function systems. J. Funct. Anal. 259(3), 583–601 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Dutkay D.E., Han D., Jorgensen P.E.T.: Orthogonal exponentials, translations, and Bohr completions. J. Funct. Anal. 257(9), 2999–3019 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dutkay D.E., Han D., Sun Q.: On the spectra of a Cantor measure. Adv. Math. 221(1), 251–276 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dutkay D.E., Jorgensen P.E.T.: Fourier frequencies in affine iterated function systems. J. Funct. Anal. 247(1), 110–137 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dutkay, D.E., Jorgensen P.E.T.: Fourier series on fractals: a parallel with wavelet theory. In: Radon Transforms, Geometry, and Wavelets. Contemporary Mathematics, vol. 464, pp. 75–101. American Mathematical Society, Providence (2008)

  7. Dutkay D.E., Jorgensen P.E.T.: Duality questions for operators, spectrum and measures. Acta Appl. Math. 108(3), 515–528 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dutkay, D.E., Jorgensen, P.E.T.: Fourier duality for fractal measures with affine scales. (2009)

  9. Dutkay D.E., Jorgensen P.E.T.: Probability and Fourier duality for affine iterated function systems. Acta Appl. Math. 107(1–3), 293–311 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dysman M.: Fractal dimensions for repellers of maps with holes. J. Stat. Phys. 120(3–4), 479–509 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Falconer K., Miao J.: Random subsets of self-affine fractals. Mathematika 56(1), 61–76 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gentile, G.: Quasiperiodic motions in dynamical systems: review of a renormalization group approach. J. Math. Phys. 51(1):015207, 34 (2010)

    Google Scholar 

  13. Hutchinson J.E.: Fractals and self-similarity. Indiana Univ. Math. J 30(5), 713–747 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ionescu M., Pearse E.P.J., Rogers L.G., Ruan H.-J., Strichartz R.S.: The resolvent kernel for PCF self-similar fractals. Trans. Am. Math. Soc 362(8), 4451–4479 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Iosevich A., Katz N., Pedersen S.: Fourier bases and a distance problem of Erdös. Math. Res. Lett. 6(2), 251–255 (1999)

    MathSciNet  MATH  Google Scholar 

  16. Iosevich A, Pedersen S.: Spectral and tiling properties of the unit cube. Internat. Math. Res. Notices 16, 819–828 (1998)

    Article  MathSciNet  Google Scholar 

  17. Jorgensen P.E.T.: Analysis and Probability: Wavelets, Signals, Fractals. Graduate Texts in Mathematics, vol. 234. Springer, New York (2006)

    Google Scholar 

  18. Jorgensen, P.E.T., Kornelson, K., Shuman K.: Orthogonal exponentials for Bernoulli iterated function systems. In: Representations, Wavelets, and Frames. Appl. Numer. Harmon. Anal, pp. 217–237. Birkhäuser, Boston (2008)

  19. Jorgensen P.E.T., Pedersen S.: Spectral theory for Borel sets in R n of finite measure. J. Funct. Anal. 107(1), 72–104 (1992)

    Article  MathSciNet  Google Scholar 

  20. Jorgensen P.E.T., Pedersen S.: Dense analytic subspaces in fractal L2-spaces. J. Anal. Math. 75, 185–228 (1998)

    Article  MathSciNet  Google Scholar 

  21. Jorgensen, P.E.T., Pedersen, S.: Orthogonal harmonic analysis of fractal measures. Electron. Res. Announc. Am. Math. Soc. 4:35–42 (1998, electronic)

    Google Scholar 

  22. Jorgensen P.E.T., Pedersen S.: Spectral pairs in Cartesian coordinates. J. Fourier Anal. Appl. 5(4), 285–302 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Katznelson Y.: An Introduction to Harmonic Analysis, 3rd edn. Cambridge Mathematical Library. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  24. Kukavica I.: The fractal dimension of the singular set for solutions of the Navier–Stokes system. Nonlinearity 22(12), 2889–2900 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Łaba I., Wang Y.: Some properties of spectral measures. Appl. Comput. Harmon. Anal. 20(1), 149–157 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lagarias C.J., Reeds J.A., Wang Y.: Orthonormal bases of exponentials for the n-cube. Duke Math. J. 103(1), 25–37 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  27. O’Malley R.E. Jr, Kirkinis E.: A combined renormalization group-multiple scale method for singularly perturbed problems. Stud. Appl. Math. 124(4), 383–410 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Pedersen S.: Spectral sets whose spectrum is a lattice with a base. J. Funct. Anal. 141(2), 496–509 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  29. Pedersen, S.: On the dual spectral set conjecture. In: Current Trends in Operator Theory and its Applications. Operator Theory Advances and Applications, vol. 149, pp. 487–491. Birkhäuser, Basel (2004)

  30. Richey M.: The evolution of Markov chain Monte Carlo methods. Am. Math. Mon. 117(5), 383–413 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Rudin W.: Real and complex analysis, 3rd edn. McGraw-Hill Book., Co., New York (1987)

    MATH  Google Scholar 

  32. Rudin, W.: Fourier analysis on groups. Wiley Classics Library. Wiley Inc., New York. Reprint of the 1962 original, A Wiley-Interscience Publication (1990)

  33. Strichartz R.S.: Waves are recurrent on noncompact fractals. J. Fourier Anal. Appl. 16(1), 148–154 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Taylor, J.: The cohomology of the spectrum of a measure algebra. Acta Mathematica. 126, 195–225 (1971) doi:10.1007/BF02392031

    Google Scholar 

  35. Wang X.Y.: Fractal dimensions of a class of random Moran sets. J. Math. (Wuhan) 29(3), 339–342 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jana Bohnstengel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bohnstengel, J., Jorgensen, P. Geometry of spectral pairs. Anal.Math.Phys. 1, 69–99 (2011). https://doi.org/10.1007/s13324-011-0005-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13324-011-0005-2

Keywords

Navigation