Refractive Index Sensor Based on Metal-Clad Planar Polymer Waveguide Operating at 850 nm


A metal-clad planar polymer waveguide refractive index sensor based on epoxy (EPO) polymer materials by using light intensity interrogation at 850 nm is designed. The polymethyl methacrylate (PMMA) material is deployed as the low refractive index (RI) buffer layer in order to better couple the optical guided mode and the surface plasmon polaritons (SPP) mode for working in water environment. The effects of the gold film thickness, PMMA buffer layer thickness, waveguide layer thickness, waveguide width, and gold length on the sensor sensing characteristics have been comprehensively studied. Simulation results demonstrate that the normalized transmission increases quasi-linearly with the increment of RI of the analyte from 1.33 to 1.46. The sensitivity is 491.5 dB/RIU, corresponding to a high RI resolution of 2.6×10−9 RIU. The designed SPP-based optical waveguide sensor is low-cost, wide-range, and high-precision, and has a broad application prospect in biochemical sensing with merits of miniaturization, flexibility, and multiplexing.


  1. [1]

    W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature, 2003, 424(6950): 824–830.

    ADS  Article  Google Scholar 

  2. [2]

    V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, et al., “Active magneto-plasmonics in hybrid metal-ferromagnet structures,” Nature Photonics, 2010, 4(2): 107–111.

    ADS  Article  Google Scholar 

  3. [3]

    K. Brahmachari, S. Ghosh, and M. Ray, “Surface plasmon resonance based sensing of different chemical and biological samples using admittance loci method,” Photonic Sensors, 2013, 3(2): 159–167.

    ADS  Article  Google Scholar 

  4. [4]

    M. Xue, Q. Jiang, C. Zhang, and J. Lin, “A kind of biomolecular probe sensor based on TFBG surface plasma resonance,” Photonic Sensors, 2015, 5(2): 102–108.

    ADS  Article  Google Scholar 

  5. [5]

    L. Wang, K. Ren, B. Sun, and K. Chen, “Highly sensitive refractive index sensor based on polymer long-period waveguide grating with liquid cladding,” Photonic Sensors, 2019, 9(1): 19–24.

    ADS  Article  Google Scholar 

  6. [6]

    Q. Jiang, M. Xue, P. Liang, C. Zhang, J. Lin, and J. Ouyang, “Principle and experiment of protein detection based on optical fiber sensing,” Photonic Sensors, 2017, 7(4): 317–324.

    ADS  Article  Google Scholar 

  7. [7]

    D. Çimen and A. Denizli, “Development of rapid, sensitive and effective plasmonic nanosensor for the detection of vitamins in infact formula and milk samples,” Photonic Sensors, 2020, 10(4): 316–332.

    Google Scholar 

  8. [8]

    R. K. Verma, A. K. Sharma, and B. D. Gupta, “Surface plasmon resonance based tapered fiber optic sensor with different taper profiles,” Optics Communications, 2008, 281(6): 1486–1491.

    ADS  Article  Google Scholar 

  9. [9]

    Y. Yuan, N. Yuan, D. Gong, and M. H. Yang, “A high-sensitivity and broad-range SPR glucose sensor based on improved glucose sensitive membranes,” Photonic Sensors, 2019, 9(4): 309–316.

    ADS  Article  Google Scholar 

  10. [10]

    D. Michel, F. Xiao, and K. Alameh, “A compact, flexible fiber-optic Surface Plasmon Resonance sensor with changeable sensor chips,” Sensors and Actuators B: Chemical, 2017, 246: 258–261.

    Article  Google Scholar 

  11. [11]

    S. K. Mishra, B. Zou, and K. S. Chiang, “Surface-plasmon-resonance refractive-index sensor with Cu-coated polymer waveguide,” IEEE Photonics Technology Letters, 2016, 28(17): 1835–1838.

    ADS  Article  Google Scholar 

  12. [12]

    J. Dostálek, J. Čtyrokß, J. Homola, E. Brynda, M. Skalskß, and P. Nekvindová, “Surface plasmon resonance biosensor based on integrated optical waveguide,” Sensors and Actuators B: Chemical, 2001, 76(1–3): 8–12.

    Article  Google Scholar 

  13. [13]

    L. Ji, X. Sun, G. He, L. Yu, X. Wang, Y. Yi, et al., “Surface plasmon resonance refractive index sensor based on ultraviolet bleached polymer waveguide,” Sensors and Actuators B: Chemical, 2017, 244: 373–379.

    Article  Google Scholar 

  14. [14]

    J. H. Ahn, T. Y. Seong, W. M. Kim, T. S. Lee, I. L. Kim, and S. Kyeong, “Fiber-optic waveguide coupled surface plasmon resonance sensor,” Optics Express, 2012, 20(19): 21729–21738.

    ADS  Article  Google Scholar 

  15. [15]

    B. Fan, L. Fang, Y. Li, X. Wang, K. Cui, F. Xue, et al., “Integrated refractive index sensor based on hybrid coupler with short range surface plasmon polariton and dielectric waveguide,” Sensors and Actuators B: Chemical, 2003, 186: 495–505.

    Article  Google Scholar 

  16. [16]

    W. R. Wong, O. Krupin, F. R. Mahamd Adikan, and P. Berini, “Optimization of long-range surface plasmon waveguides for attenuation-based biosensing,” Journal of Lightwave Technology, 2015, 33(15): 3234–3242.

    ADS  Article  Google Scholar 

  17. [17]

    J. Homola, J. Čtyroký, M. Skalský, J. Hradilová, and P. Kolářová, “A surface plasmon resonance based integrated optical sensor,” Sensors and Actuators B: Chemical, 1997, 39(1–3): 286–290.

    Article  Google Scholar 

  18. [18]

    R. D. Harris and J. S. Wilkinson, “Waveguide surface plasmon resonance sensors,” Sensors and Actuators B: Chemical, 1995, 29(1–3): 261–267.

    Article  Google Scholar 

  19. [19]

    L. Ji, S. Yang, R. Shi, Y. Fu, J. Su, and C. Wu, “Polymer waveguide coupled surface plasmon refractive index sensor: a theoretical study,” Photonic Sensors, 2020, 10(4): 353–363.

    Google Scholar 

  20. [20]

    P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Physical Review B, 1972, 6(12): 4370–4379.

    ADS  Article  Google Scholar 

  21. [21]

    O. Krupin, H. Asiri, C. Wang, R. N. Tait, and P. Berini, “Biosensing using long-range surface plasmon-polariton waveguides,” Optics Express, 2013, 21(1): 698–709.

    ADS  Article  Google Scholar 

  22. [22]

    S. Kedenburg, M. Vieweg, T. Gissibl, and H. Giessen, “Linear refractive index and absorption measurements of nonlinear optical liquids in the visible and near-infrared spectral region,” Optical Materials Express, 2012, 2(11): 1588–1611.

    ADS  Article  Google Scholar 

  23. [23]

    Y. Xu, F. Wang, Y. Gao, D. Zhang, X. Sun, and P. Berini, “Straight long-range surface plasmon polariton waveguide sensor operating at λ0 = 850 nm,” Sensors, 2020, 20(9): 2507.

    Article  Google Scholar 

Download references


The authors gratefully acknowledge the financial support from the Shandong Provincial Key Research and Development Program (Grant Nos. 2018YFJH0702 and 2019JZZY020711), Shandong Postdoctoral Innovation Project, and Qingdao Postdoctoral Applied Research Project.

Author information



Corresponding author

Correspondence to Chi Wu.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ji, L., Wei, W., Li, G. et al. Refractive Index Sensor Based on Metal-Clad Planar Polymer Waveguide Operating at 850 nm. Photonic Sens (2020).

Download citation


  • Metal-clad optical waveguide sensor
  • intensity interrogation
  • refractive index of liquid