Tapered Optical Fiber-Based LSPR Biosensor for Ascorbic Acid Detection

Abstract

The ascorbic acid (AA) is a biomarker that can be used to detect the symptoms of severe disorders such as scurvy, Parkinson’s, Alzheimer’s, and cardiovascular diseases. In this work, a simple and effective sensor model is developed to diagnose the presence of AA samples. To develop the sensor, a tapered single-mode optical fiber has been used with the well-known phenomenon of localized surface plasmon resonance (LSPR). For LSPR, the tapered region is immobilized with synthesized gold nanoparticles (AuNPs) and zinc oxide nanoparticles (ZnO-NPs) whose absorbance peak wavelengths appear at 519nm and 370nm, respectively. On the basis of nanoparticles (NPs) configurations, two different biosensor probes are developed. In the first one, the sensing region is immobilized with AuNPs and named Probe I. In the second probe, the immobilized layer of AuNPs is further coated with a layer of ZnO-NPs, and a resultant probe is termed as Probe II. The characterizations of synthesized AuNPs and developed fiber probes are done by the ultraviolet-visible (UV-vis) spectrophotometer, high-resolution transmission electron microscope (HR-TEM), atomic force microscopy (AFM), and scanning electron microscope (SEM). To enhance the selectivity, a sensing region of probes is functionalized with ascorbate oxidase enzyme that oxidizes the AA in the presence of oxygen. The response of developed sensor probes is authenticated by sensing the samples of AA in the range from 500 nM to 1 mM, which covers the range of AA found in human bodies, i.e., 40µM–120µM. The performance analysis of the developed sensor probes has been done in terms of their stability, reproducibility, reusability, and selectivity. To observe the stability of AA, a pH-test has also been done that results in a better solubility of AA molecules in phosphate-buffered saline (PBS) solution.

References

  1. [1]

    J. F. Turrens, “Mitochondrial formation of reactive oxygen species,” The Journal of Physiology, 2003, 552(2): 335–344.

    Article  Google Scholar 

  2. [2]

    L. Jiang, K. Yang, J. Tian, Q. Guan, N. Yao, N. Cao, et al., “Efficacy of antioxidant vitamins and selenium supplement in prostate cancer prevention: a meta-analysis of randomized controlled trials,” Nutrition and Cancer, 2010, 62(6): 719–727.

    Article  Google Scholar 

  3. [3]

    M. Levine, S. C. Rumsey, R. Daruwala, J. B. Park, and Y. Wang, “Criteria and recommendations for vitamin C intake,” The Journal of the American Medical Association, 1999, 281(15): 1415–1423.

    Article  Google Scholar 

  4. [4]

    D. T. Alexandrescu, C. A. Dasanu, and C. L. Kauffman, “Acute scurvy during treatment with interleukin-2,” Clinical and Experimental Dermatology: Clinical Dermatology, 2009, 34(7): 811–814.

    Article  Google Scholar 

  5. [5]

    M. T. Heafield, S. Fearn, G. B. Steventon, R. H. Waring, A. C. Williams, and S. G. Sturman, “Plasma cysteine and sulphate levels in patients with motor neurone, Parkinson’s and Alzheimer’s disease,” Neuroscience Letters, 1990, 110(1–2): 216–220.

    Article  Google Scholar 

  6. [6]

    S. J. Padayatty, A. Katz, Y. Wang, P. Eck, O. Kwon, J. Lee, et al., “Vitamin C as an antioxidant: evaluation of its role in disease prevention,” Journal of the American College of Nutrition, 2003, 22(1): 18–35.

    Article  Google Scholar 

  7. [7]

    K. Matsumoto, K. Yamada, and Y. Osajima, “Ascorbate electrode for determination of L-ascorbic acid in food,” Analytical Chemistry, 1981, 53(13): 1974–1979.

    Article  Google Scholar 

  8. [8]

    S. Çevik, O. Akpolat, and Ü. Anik, “Ascorbic acid detection with MnO2-modified GCPE,” Food Analytical Methods, 2016, 9(2): 500–504.

    Article  Google Scholar 

  9. [9]

    J. Liu, Y. Chen, W. Wang, J. Feng, M. Liang, S. Ma, et al., “‘Switch-On’ fluorescent sensing of ascorbic acid in food samples based on carbon quantum dots-MnO2 probe,” Journal of Agricultural and Food Chemistry, 2016, 64(1): 371–380.

    Article  Google Scholar 

  10. [10]

    W. J. Ni, D. Shan, R. H. Zhu, S. Y. Deng, S. Cosnier, and X. J. Zhang, “Dumbbell-shaped carbon quantum dots/AuNCs nanohybrid as an efficient ratiometric fluorescent probe for sensing cadmium (II) ions and 1-ascorbic acid,” Carbon, 2016, 96: 1034–1042.

    Article  Google Scholar 

  11. [11]

    J. Chen, J. Ge, L. Zhang, Z. Li, J. Li, Y. Sun, et al., “Reduced graphene oxide nanosheets functionalized with poly (styrene sulfonate) as a peroxidase mimetic in a colorimetric assay for ascorbic acid,” Microchimica Acta, 2016, 183(6): 1847–1853.

    Article  Google Scholar 

  12. [12]

    D. R. S. Lima, M. Cossenza, C. G. Garcia, C. C. Portugal, F. F. de C. Marques, R. Paes-de-Carvalho, et al., “Determination of ascorbic acid in the retina during chicken embryo development using high performance liquid chromatography and UV detection,” Analytical Methods, 2016, 8(27): 5441–5447.

    Article  Google Scholar 

  13. [13]

    S. Zang, S. Tian, J. Jiang, D. Han, X. Yu, K. Wang, et al., “Determination of antioxidant capacity of diverse fruits by electron spin resonance (ESR) and UV-vis spectrometries,” Food Chemistry, 2017, 221: 1221–1225.

    Article  Google Scholar 

  14. [14]

    I. Biran, X. Yu, and D. R. Walt, Optical biosensors: Chapter 1 — optrode-based fiber optic biosensors (bio-optrode) (Second Edition), Amsterdam: Elsevier, 2008: 3–82.

    Google Scholar 

  15. [15]

    A. B. Socorro, E. Santamaria, J. F. Irigoyen, I. D. Villar, J. M. Corres, F. J. Arregui, et al., “Fiber-optic immunosensor based on an etched SMS structure,” IEEE Journal of Selected Topics in Quantum Electronics, 2016, 23(2): 314–321.

    ADS  Article  Google Scholar 

  16. [16]

    S. Kumar, B. K. Kaushik, R. Singh, N. K. Chen, Q. S. Yang, X. Zhang, et al., “LSPR-based cholesterol biosensor using a tapered optical fiber structure,” Biomedical Optics Express, 2019, 10(5): 2150–2160.

    Article  Google Scholar 

  17. [17]

    K. Li, G. Liu, Y. Wu, P. Hao, W. Zhou, and Z. Zhang, “Gold nanoparticle amplified optical microfiber evanescent wave absorption biosensor for cancer biomarker detection in serum,” Talanta, 2014, 120: 419–424.

    Article  Google Scholar 

  18. [18]

    Y. Li, H. Ma, L. Gan, Q. Liu, Z. Yan, D. Liu, et al., “Immobilized optical fiber microprobe for selective and high sensitive glucose detection,” Sensors and Actuators B: Chemical, 2018, 255: 3004–3010.

    Article  Google Scholar 

  19. [19]

    N. M. Y. Zhang, M. Qi, Z. Wang, Z. Wang, M. Chen, K. Li, et al., “One-step synthesis of cyclodextrin-capped gold nanoparticles for ultra-sensitive and highly-integrated plasmonic biosensors,” Sensors and Actuators B: Chemical, 2019, 286: 429–436.

    Article  Google Scholar 

  20. [20]

    G. Zheng, Y. Liu, L. Shi, R. Zhao, and T. Wang, “Reflective index sensors based on tilted fiber Bragg grating inscribed in the thin-core fiber,” in 2016 15th International Conference on Optical Communications and Networks (ICOCN), China, Sept. 24–27, 2016, pp. 1–3.

  21. [21]

    M. Batumalay, S. W. Harun, F. Ahmad, R. M. Nor, N. R. Zulkepely, and H. Ahmad, “Tapered plastic optical fiber coated with graphene for uric acid detection,” IEEE Sensors Journal, 2014, 14(5): 1704–1709.

    ADS  Article  Google Scholar 

  22. [22]

    L. Singh, G. Zhu, R. Singh, B. Zhang, W. Wang, B. K. Kaushik, et al., “Gold nanoparticles and uricase functionalized tapered fiber sensor for uric acid detection,” IEEE Sensors Journal, 2019, 20(1): 219–226.

    ADS  Article  Google Scholar 

  23. [23]

    C. T. Lee, M. L. Wu, L. G. Sheu, P. L. Fan, and J. M. Hsu, “Design and analysis of completely adiabatic tapered waveguides by conformal mapping,” Journal of Lightwave Technology, 1997, 15(2): 403–410.

    ADS  Article  Google Scholar 

  24. [24]

    J. L. Hammond, N. Bhalla, S. D. Rafiee, and P. Estrela, “Localized surface plasmon resonance as a biosensing platform for developing countries,” Biosensors (Basel), 2014, 4(2): 172–188.

    Article  Google Scholar 

  25. [25]

    A. K. Sharma, J. Gupta, and I. Sharma, “Fiber optic evanescent wave absorption-based sensors: a detailed review of advancements in the last decade (2007–18),” Optik, 2019, 183: 1008–1025.

    ADS  Article  Google Scholar 

  26. [26]

    X. Guo, “Surface plasmon resonance-based biosensor technique: a review,” Journal of Biophotonics, 2012, 5(7): 483–501.

    Article  Google Scholar 

  27. [27]

    J. Turkevich, P. C. Stevenson, and J. Hillier, “A study of the nucleation and growth processes in the synthesis of colloidal gold,” Discussions of the Faraday Society, 1951, 11: 55–75.

    Article  Google Scholar 

  28. [28]

    H. M. Kim, D. H. Jeong, H. Y. Lee, J. H. Park, and S. K. Lee, “Improved stability of gold nanoparticles on the optical fiber and their application to refractive index sensor based on localized surface plasmon resonance,” Optics & Laser Technology, 2019, 114: 171–178.

    ADS  Article  Google Scholar 

  29. [29]

    I. Arghir, D. Spasic, B. E. Verlinden, F. Delport, and J. Lammertyn, “Improved surface plasmon resonance biosensing using silanized optical fibers,” Sensors and Actuators B: Chemical, 2015, 216: 518–526.

    Article  Google Scholar 

  30. [30]

    S. Aza, E. Sadeghi, R. Parvizi, A. Mazaheri, and M. Yousefi, “Sensitivity optimization of ZnO clad-modified optical fiber humidity sensor by means of tuning the optical fiber waist diameter,” Optics & Laser Technology, 2017, 90: 96–101.

    ADS  Article  Google Scholar 

  31. [31]

    L. Coelho, D. Viegas, J. L. Santos, and J. D. Almeida, “Characterization of zinc oxide coated optical fiber long period gratings with improved refractive index sensing properties,” Sensors and Actuators B: Chemical, 2016, 223: 45–51.

    Article  Google Scholar 

  32. [32]

    F. Qu, H. Lu, M. Yang, and C. Deng, “Electrochemical immunosensor based on electron transfer mediated by graphene oxide initiated silver enhancement,” Biosensors and Bioelectronics, 2011, 26(12): 4810–4814.

    Article  Google Scholar 

  33. [33]

    N. EllinaAzmi, A. H. A. Rashid, J. Abdullah, N. A. Yusof, and H. Sidek, “Fluorescence biosensor based on encapsulated quantum dots/enzymes/sol-gel for non-invasive detection of uric acid,” Journal of Luminescence, 2018, 202: 309–315.

    ADS  Article  Google Scholar 

  34. [34]

    A. M. Shrivastav, S. K. Mishra, and B. D. Gupta, “Surface plasmon resonance-based fiber optic sensor for the detection of ascorbic acid utilizing molecularly imprinted polyaniline film,” Plasmonics, 2015, 10(6): 1853–1861.

    Article  Google Scholar 

  35. [35]

    G. K. Schwalfenberg, “The alkaline diet: is there evidence that an alkaline pH diet benefits health?,” Journal of Environmental and Public Health, 2012, 2012: 727630.

    Google Scholar 

  36. [36]

    Z. Samavati, A. Samavati, A. F. Ismail, M. H. D. Othman, and M. A. Rahman, “Comprehensive investigation of evanescent wave optical fiber refractive index sensor coated with ZnO nanoparticles,” Optical Fiber Technology, 2019, 52: 101976.

    Article  Google Scholar 

  37. [37]

    R. Kant and B. D. Gupta, “Fiber-optic SPR based acetylcholine biosensor using enzyme functionalized Ta2O5 nanoflakes for alzheimer’s disease diagnosis,” Journal of Lightwave Technology, 2018, 36(18): 4018–4024.

    ADS  Article  Google Scholar 

  38. [38]

    J. Villatoro and D. Monzon-Hernandez, “Low-cost optical fiber refractive-index sensor based on core diameter mismatch,” Journal of Lightwave Technology, 2006, 24(3): 1409–1413.

    ADS  Article  Google Scholar 

  39. [39]

    Y. Song, C. Gong, D. Su, Y. Shen, Y. Song, and L. Wang, “A novel ascorbic acid electrochemical sensor based on spherical MOF-5 arrayed on a three-dimensional porous carbon electrode,” Analytical Methods, 2016, 8(10): 2290–2296.

    Article  Google Scholar 

  40. [40]

    J. Chen, J. Ge, L. Zhang, Z. Li, J. Li, Y. Sun, et al., “Reduced graphene oxide nanosheets functionalized with poly (styrene sulfonate) as a peroxidase mimetic in a colorimetric assay for ascorbic acid,” Microchimica Acta, 2016, 183(6): 1847–1853.

    Article  Google Scholar 

  41. [41]

    H. Meng, D. Yang, Y. Tu, and J. Yan, “Turn-on fluorescence detection of ascorbic acid with gold nanolcusters,” Talanta, 2017, 165: 346–350.

    Article  Google Scholar 

  42. [42]

    C. Mu, H. Lu, J. Bao, and Q. Zhang, “Visual colorimetric ‘turn-off’ biosensor for ascorbic acid detection based on hypochlorite-3,3′,5,5′,-Tetramethylbenzidine system,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018, 201: 61–66.

    ADS  Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Key Research & Development Program of China (Grant No. 2016YFB0402105), the Belt and Road Special Project approved by Shandong Province for the Introduction of Foreign Experts in 2018, Double-Hundred Talent Plan of Shandong Province, Liaocheng University, China (Grant Nos. 31805180301 and 31805180326), and Science and Engineering Research Board (SERB), India (Grant No. TAR/2018/000051).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Bingyuan Zhang or Santosh Kumar.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhu, G., Singh, L., Wang, Y. et al. Tapered Optical Fiber-Based LSPR Biosensor for Ascorbic Acid Detection. Photonic Sens (2020). https://doi.org/10.1007/s13320-020-0605-2

Download citation

Keywords

  • Ascorbic acid
  • localized surface plasmon resonance
  • gold nanoparticles
  • zinc oxide nanoparticles
  • tapered fiber
  • optical fiber sensor