Distributed Fiber Birefringence Measurement Using Pulse-Compression Φ-OTDR

Abstract

In this paper, a novel birefringence measurement method through the Rayleigh backscattered lightwave within single-mode fiber is proposed, using a single chirped-pulse with arbitrary state of polarization. Numerical analysis is carried out in detail, then pulse-compression phase-sensitive optical time domain reflectometry (PC-Φ-OTDR) with polarization-diverse coherent detection is employed to verify this method. A 2km spun single-mode fiber is tested with 8.6 cm spatial resolution, and the average birefringence of the fiber under test is measured as 0.234rad/m, which is consistent with previous literatures about single-mode fiber. Moreover, the relationship between the measured birefringence and the spatial resolution is also studied for the first time, and the results show that spatial resolution is crucial for fiber birefringence measurement.

References

  1. [1]

    A. Galtarossa and L. Palmieri, “Distributed polarization sensing,” in 25th International Conference on Optical Fiber Sensors, Jeju, Korea, 2017, pp. 1032318.

  2. [2]

    S. Rashleigh, “Origins and control of polarization effects in single-mode fibers,” Journal of Lightwave Technology, 1983, 1(2): 312–331.

    ADS  Article  Google Scholar 

  3. [3]

    A. Wegmuller, M. Legre, and N. Gisin, “Distributed beatlength measurement in single-mode fibers with optical frequency-domain reflectometry,” Journal of Lightwave Technology, 2002, 20(5): 828–835.

    ADS  Article  Google Scholar 

  4. [4]

    A. M. Kurbatov and R. A. Kurbatov, “Polarization and modal filters based on W-fibers panda for fiber-optic gyroscopes and high-power fiber lasers,” Optical Engineering, 2013, 52(3): 035006.

    ADS  Article  Google Scholar 

  5. [5]

    R. Wang, S. Xu, W. Li, and X. Wang, “Optical fiber current sensor research: review and outlook,” Optical and Quantum Electronics, 2016, 48(9): 442.

    Article  Google Scholar 

  6. [6]

    B. E. Olsson, M. Karlsson, and P. A. Andrekson, “Polarization mode dispersion measurement using a Sagnac interferometer and a comparison with the fixed analyzer method,” IEEE Photonics Technology Letters, 1998, 10(7): 997–999.

    ADS  Article  Google Scholar 

  7. [7]

    X. Fang and R. O. Claus, “Polarization-independent all-fiber wavelength-division multiplexer based on a Sagnac interferometer,” Optics Letters, 1995, 20(20): 2146–2148.

    ADS  Article  Google Scholar 

  8. [8]

    C. S. Kim, Y. G. Han, R. M. Sova, U. C. Paek, Y. Chung, and J. U. Kang, “Optical fiber modal birefringence measurement based on Lyot-Sagnac interferometer,” IEEE Photonics Technology Letters, 2003, 15(2): 269–271.

    ADS  Article  Google Scholar 

  9. [9]

    Z. Ren, Y. Wang, and P. A. Robert, “Faraday rotation and its temperature dependence measurements in low-birefringence fibers,” Journal of Lightwave Technology, 1989, 7(8): 1275–1278.

    ADS  Article  Google Scholar 

  10. [10]

    M. Segura, N. Vukovic, N. White, W. H. Loh, F. Poletti, et al., “Low birefringence measurement and temperature dependence in meter-long optical fibers,” Journal of Lightwave Technology, 2015, 33(12): 2697–2702.

    ADS  Article  Google Scholar 

  11. [11]

    L. Thévenaz, M. Facchini, A. Fellay, M. Niklès, and P. Robert, “Evaluation of local birefringence along fibres using Brillouin analysis,” in Conference Digest OFMC’97, Teddington, UK, 1997, pp: 82–85.

  12. [12]

    Y. Lu, X. Bao, L. Chen, S. Xie, and M. Pang, “Distributed birefringence measurement with beat period detection of homodyne Brillouin optical time-domain reflectometry,” Optics Letters, 2012, 37(19): 3936–3938.

    ADS  Article  Google Scholar 

  13. [13]

    A. J. Rogers, “Polarization-optical time domain reflectometry: a technique for the measurement of field distributions,” Applied Optics, 1981, 20(6): 1060–1074.

    ADS  Article  Google Scholar 

  14. [14]

    A. Galtarossa, L. Palmieri, M. Schiano, and T. Tambosso, “Statistical characterization of fiber random birefringence,” Optics Letters, 2000, 25(18): 1322–1324.

    ADS  Article  Google Scholar 

  15. [15]

    M. A. Soto, X. Lu, H. F. Martins, M. Gonzalez-Herraez, and L. Thévenaz, “Distributed phase birefringence measurements based on polarization correlation in phase-sensitive optical time-domain reflectometers,” Optics Express, 2015, 23(19): 24923–24936.

    ADS  Article  Google Scholar 

  16. [16]

    L. Liu, C. Wu, C. Shang, Z. Li, and J. Wang, “Quaternion approach to the measurement of the local birefringence distribution in optical fibers,” IEEE Photonics Journal, 2015, 7(4): 1–14.

    Google Scholar 

  17. [17]

    L. Costal, R. Magalhaes, L. Palmieri, H. Martins, S. Martin-Lopez, M. R. Fernández-Ruiz, et al., “Fast and direct measurement of the linear birefringence profile in standard single-mode optical fibers,” Optics Letters, 2020, 45(3): 623–626.

    ADS  Article  Google Scholar 

  18. [18]

    J. Xiong, J. Jiang, Y. Wu, Y. Chen, L. Xie, Y. Fu, et al., “Chirped-pulse coherent-OTDR with predistortion,” Journal of Optics, 2018, 20(3): 034001.

    ADS  Article  Google Scholar 

  19. [19]

    F. Corsi, A. Galtarossa, and L. Palmieri, “Analytical treatment of polarization-mode dispersion in single-mode fibers by means of the backscattered signal,” Journal of the Optical Society of America A, 1999, 16(3): 574–583.

    ADS  Article  Google Scholar 

  20. [20]

    Z. Wang, Y. Fu, X. Qian, L. Zhang, and Y. Rao, “Proposal for distributed measurement of Müller matrix in optical fibers,” in 2016 15th International Conference on Optical Communications and Networks (ICOCN), China, Sept. 24–27, 2016, pp: 1–3.

  21. [21]

    Z. Yu, X. Yi, Q. Yang, M. Luo, J. Zhang, L. Chen, et al., “Polarization demultiplexing in stokes space for coherent optical PDM-OFDM,” Optics Express, 2013, 21(3): 3885–3890.

    ADS  Article  Google Scholar 

  22. [22]

    M. Ren, P. Lu, L. Chen, and X. Bao, “Theoretical and experimental analysis of Φ-OTDR based on polarization diversity detection,” IEEE Photonics Technology Letters, 2015, 28(6): 697–700.

    ADS  Article  Google Scholar 

  23. [23]

    J. Jiang, Z. Wang, Z. Wang, Y. Wu, S. Lin, J. Xiong, et al., “Coherent Kramers-Kronig receiver for Φ-OTDR,” Journal of Lightwave Technology, 2019, 37(18): 4799–4807.

    ADS  Article  Google Scholar 

  24. [24]

    A. Kumar and A. K. Ghatak, Polarization of light with applications in optical fibers. Washington, USA: SPIE Press, 2011: 98–118.

    Google Scholar 

  25. [25]

    Z. Wang, L. Zhang, S. Wang, N. Xue, F. Peng, M. Fan, et al., “Coherent Φ-OTDR based on I/Q demodulation and homodyne detection,” Optics Express, 2016, 24(2): 853–858.

    ADS  Article  Google Scholar 

  26. [26]

    A. Galtarossa and L. Palmieri, “Reflectometric measurements of PMD properties in long single-mode fibers,” Optical Fiber Technology, 2003, 9(3): 119–142.

    ADS  Article  Google Scholar 

  27. [27]

    G. J. Foschini and C. D. Poole, “Statistical theory of polarization dispersion in single mode fibers,” Journal of Lightwave Technology, 1991, 9(11): 1439–1456.

    ADS  Article  Google Scholar 

  28. [28]

    P. K. A. Wai and C. R. Menyak, “Polarization mode dispersion, decorrelation, and diffusion in optical fibers with randomly varying birefringence,” Journal of Lightwave Technology, 1996, 14(2): 148–157.

    ADS  Article  Google Scholar 

  29. [29]

    M. J. Li and D. A. Nolan, “Fiber spin-profile designs for producing fibers with low polarization mode dispersion,” Optics Letters, 1998, 23(21): 1659–1661.

    ADS  Article  Google Scholar 

  30. [30]

    L. Palmieri, “Polarization properties of spun single-mode fibers,” Journal of Lightwave Technology, 2006, 24(11): 4075–4088.

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zinan Wang.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Fu, Y., Xiong, J. et al. Distributed Fiber Birefringence Measurement Using Pulse-Compression Φ-OTDR. Photonic Sens (2020). https://doi.org/10.1007/s13320-020-0604-3

Download citation

Keywords

  • Birefringence
  • Rayleigh scattering
  • pulse-compression
  • phase-sensitive optical time-domain reflectometry
  • coherent detection
  • polarization-diverse receiver