A Micro Structure POF Relative Humidity Sensor Modified With Agarose Based on Surface Plasmon Resonance and Evanescent Wave Loss

Abstract

A novel high sensitivity relative humidity (RH) sensor was proposed by using micro structure plastic optical fiber (POF) based on the surface plasmon resonance (SPR) effect and the evanescent wave (EW) loss. The micro structure was fabricated on the POF and coated with a gold layer and agarose, adopting the sputtering and dip-coating technique. These construction effects on the attenuation of power caused by the SPR effect and the EW loss were used to perform RH detections. The agarose’s different refractive indexes (RIs) caused fluctuations in the transmission power when the humidity increased. The demonstrated experimental results showed that the proposed sensor achieved a linear response from 20% RH to 80% RH with a high sensitivity of 0.595µW/%. The proposed sensor had the advantages of fast response and recovery. Furthermore, the temperature dependence and the repeatability test of the sensor were also performed.

References

  1. [1]

    L. Alwis, T. Sun, and K. T. V. Grattan, “Optical fibre-based sensor technology for humidity and moisture measurement: review of recent progress,” Measurement, 2013, 46(10): 4052–4074.

    Article  Google Scholar 

  2. [2]

    F. U. Hernandez, S. P. Morgan, B. R. Hayes-Gill, D. Harvey, W. Kinnear, A. Norris, et al., “Characterization and use of a fiber optic sensor based on PAH/SiO2 film for humidity sensing in ventilator care equipment,” IEEE Transactions on Biomedical Engineering, 2016, 63(9): 1985–1992.

    Article  Google Scholar 

  3. [3]

    A. Barrias, J. R. Casas, and S. Villalba, “A review of distributed optical fiber sensors for civil engineering applications,” Sensors, 2016, 16(5): 748–1–748–35.

    Article  Google Scholar 

  4. [4]

    J. Ascorbe, J. M. Corres, F. J. Arregui, and I. R. Matias, “Recent developments in fiber optics humidity sensors,” Sensors, 2017, 17(4): 893–1–893–23.

    Article  Google Scholar 

  5. [5]

    A. Urrutia, J. Goicoechea, A. L. Ricchiuti, D. Barrera, S. Sales, and F. J. Arregui, “Simultaneous measurement of humidity and temperature based on a partially coated optical fiber long period grating,” Sensors and Actuators B: Chemical, 2016, 227(5): 135–141.

    Article  Google Scholar 

  6. [6]

    Y. Q. Wang, C. Y. Shen, W. M. Lou, F. Y. Shentu, C. Zhong, X. Y. Dong, et al., “Fiber optic relative humidity sensor based on the tilted fiber Bragg grating coated with graphene oxide,” Applied Physics Letters, 2016, 109(3): 031107–1–031107–5.

    ADS  Article  Google Scholar 

  7. [7]

    G. Yan, Y. Liang, E. H. Lee, and S. He, “Novel Knob-integrated fiber Bragg grating sensor with polyvinyl alcohol coating for simultaneous relative humidity and temperature measurement,” Optics Express, 2015, 23(12): 15624–15634.

    ADS  Article  Google Scholar 

  8. [8]

    Z. W. Xie, H. T. Yan, Y. F. Li, and X. Y. Zhao, “A humidity fiber sensor based on both end-sides of a fiber Bragg grating coated with polyimide,” Optical Fiber Technology, 2020, 57: 102220.

    Article  Google Scholar 

  9. [9]

    H. T. Yan, Q. Liu, Y. Ming, W. Luo, Y. Chen, and Y. Q. Lu, “Metallic grating on a D-shaped fiber for refractive index sensing,” IEEE Photonics Journal, 2013, 5(5): 4800706–4800706.

    ADS  Article  Google Scholar 

  10. [10]

    S. Zheng, Y. Zhu, and S. Krishnaswamy, “Fiber humidity sensors with high sensitivity and selectivity based on interior nanofilm-coated photonic crystal fiber long-period gratings,” Sensors and Actuators B: Chemical, 2013, 176: 264–274.

    Article  Google Scholar 

  11. [11]

    R. Gao, D. F. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. M. Qi, “Humidity sensor based on power leakage at resonance wavelengths of a hollow core fiber coated with reduced graphene oxide,” Sensors and Actuators B: Chemical, 2016, 222: 618–624.

    Article  Google Scholar 

  12. [12]

    M. R. K. Soltanian, A. S. Sharbirin, M. M. Ariannejad, I. S. Amiri, R. M. De La Rue, G. Brambilla, et al., “Variable waist-diameter Mach-Zehnder tapered-fiber interferometer as humidity and temperature sensor,” IEEE Sensors Journal, 2016, 16(15): 5987–5992.

    ADS  Article  Google Scholar 

  13. [13]

    J. Ascorbe, J. M. Corres, I. R. Matias, and F. J. Arregui, “High sensitivity humidity sensor based on cladding-etched optical fiber and lossy mode resonances,” Sensors and Actuators B: Chemical, 2016, 233: 7–16.

    Article  Google Scholar 

  14. [14]

    H. Chen, Z. Gu, and K. Gao, “Humidity sensor based on cascaded chirped long-period fiber gratings coated with TiO2/SnO2 composite films,” Sensors and Actuators B: Chemical, 2014, 196: 18–22.

    Article  Google Scholar 

  15. [15]

    C. R. Zamarreño, M. Hernaez, P. Sanchez, I. Del Villar, I. R. Matias, and F. J. Arregui, “Optical fiber humidity sensor based on lossy mode resonances supported by TiO2/PSS coatings,” Procedia Engineering, 2011, 25: 1385–1388.

    Article  Google Scholar 

  16. [16]

    P. Sanchez, C. R. Zamarreno, M. Hernaez, I. Del Villar, I. R. Matias, and F. J. Arregui, “Considerations for lossy-mode resonance-based optical fiber sensor,” IEEE Sensors Journal, 2012, 13(4): 1167–1171.

    ADS  Article  Google Scholar 

  17. [17]

    S. K. Khijwania, K. L. Srinivasan, and J. P. Singh, “An evanescent-wave optical fiber relative humidity sensor with enhanced sensitivity,” Sensors and Actuators B: Chemical, 2005, 104(2): 217–222.

    Article  Google Scholar 

  18. [18]

    Y. Xiao, J. Zhang, X. Cai, S. Z. Tan, J. H. Yu, H. H. Lu, et al., “Reduced graphene oxide for fiber-optic humidity sensing,” Optics Express, 2014, 22(25): 31555–31567.

    ADS  Article  Google Scholar 

  19. [19]

    A. M. Shrivastav, S. K. Mishra, and B. D. Gupta, “Fiber optic SPR sensor for the detection of melamine using molecular imprinting,” Sensors and Actuators B: Chemical, 2015, 212: 404–410.

    Article  Google Scholar 

  20. [20]

    N. Cennamo, G. D’Agostino, M. Pesavento, and L. Zeni, “High selectivity and sensitivity sensor based on MIP and SPR in tapered plastic optical fibers for the detection of L-nicotine,” Sensors and Actuators B: Chemical, 2014, 191: 529–536.

    Article  Google Scholar 

  21. [21]

    N. Cennamo, M. Pesavento, L. Lunelli, L. Vanzetti, C. Pederzolli, L. Zeni, et al., “An easy way to realize SPR aptasensor: a multimode plastic optical fiber platform for cancer biomarkers detection,” Talanta, 2015, 140: 88–95.

    Article  Google Scholar 

  22. [22]

    R. Verma and B. D. Gupta, “A novel approach for simultaneous sensing of urea and glucose by SPR based optical fiber multianalyte sensor,” Analyst, 2014, 139(6): 1449–1455.

    ADS  Article  Google Scholar 

  23. [23]

    Z. K. Fan, S. G. Li, Q. Liu, G. W. An, H. L. Chen, J. S. Li, et al., “High sensitivity of refractive index sensor based on analyte-filled photonic crystal fiber with surface plasmon resonance,” IEEE Photonics Journal, 2015, 7(3): 1–9.

    Article  Google Scholar 

  24. [24]

    Z. H. Liu, Y. Wei, Y. Zhang, C. L. Liu, Y. X. Zhang, E. M. Zhao, et al., “Distributed fiber surface plasmon resonance sensor based on the incident angle adjusting method,” Optics Letters, 2015, 40(19): 4452–4455.

    ADS  Article  Google Scholar 

  25. [25]

    Y. Wei, C. L. Liu, Y. H. Zhang, Y. X. Luo, X. F. Nie, Z. H. Liu, et al., “Multi-channel SPR sensor based on the cascade application of the single-mode and multimode optical fiber,” Optics Communications, 2017, 390: 82–87.

    ADS  Article  Google Scholar 

  26. [26]

    Z. H. Liu, Y. Wang, Y. Zhang, Y. S. Wang, E. M. Zhao, Y. X. Zhang, et al., “A multi-channel fiber SPR sensor based on TDM technology,” Sensors and Actuators B: Chemical, 2016, 226: 326–331.

    Article  Google Scholar 

  27. [27]

    A. Leung, K. Rijal, P. M. Shankar, and R. Mutharasan, “Effects of geometry on transmission and sensing potential of tapered fiber sensors,” Biosensors and Bioelectronics, 2006, 21(12): 2202–2209.

    Article  Google Scholar 

  28. [28]

    D. J. Feng, M. S. Zhang, G. X. Liu, X. L. Liu, and D. F. Jia, “D-shaped plastic optical fiber sensor for testing refractive index,” IEEE Sensors Journal, 2014, 14(5): 1673–1676.

    ADS  Article  Google Scholar 

  29. [29]

    I. Puspita, F. I. Husada, and A. M. Hatta, “Detection of lard adulteration in olive oil by using tapered plastic optical fiber (POF) spectroscopy,” in Third International Seminar on Photonics, Optics, and Its Applications (ISPhOA 2018), Indonesia, 2019, pp. 110440H.

  30. [30]

    Y. S. Dwivedi, A. K. Sharma, and B. D. Gupta, “Influence of design parameters on the performance of a surface plasmon sensor based fiber optic sensor,” Plasmonics, 2008, 3(2–3): 79–86.

    Article  Google Scholar 

  31. [31]

    M. Kanso, S. Cuenot, and G. Louarn, “Sensitivity of optical fiber sensor based on surface plasmon resonance: modeling and experiments,” Plasmonics, 2008, 3(2–3): 49–57.

    Article  Google Scholar 

  32. [32]

    M. Batumalay, S. W. Harun, F. Ahmad, R. M. Nor, N. R. Zulkepely, and H. Ahmad, “Study of a fiber optic humidity sensor based on agarose gel,” Journal of Modern Optics, 2014, 61(3): 244–248.

    ADS  Article  Google Scholar 

  33. [33]

    A. Ghaffar, Y. L. Hou, W. Y. Liu, F. A. Dharejo, H. X. Zhang, P. G. Jia, et al., “Two-dimensional displacement optical fiber sensor based on macro-bending effect,” Optics & Laser Technology, 2019, 120: 105688.

    Article  Google Scholar 

  34. [34]

    H. Y. Guan, K. Xia, C. Y. Chen, Y. H. Luo, J. Y. Tang, H. H. Lu, et al., “Tungsten disulfide wrapped on micro fiber for enhanced humidity sensing,” Optical Materials Express, 2017, 7(5): 1686–1696.

    ADS  Article  Google Scholar 

  35. [35]

    Y. Wang, C. Shen, W. Lou, and F. Shentu, “Fiber optic humidity sensor based on the graphene oxide/PVA composite film,” Optics Communications, 2016, 372: 229–234.

    ADS  Article  Google Scholar 

  36. [36]

    S. Liu, H. Meng, S. Deng, Z. Wei, F. Wang, and C. Tan, “Fiber humidity sensor based on a graphene-coated core-offset Mach-Zehnder interferometer,” IEEE Sensors Letters, 2018, 2(3): 1–4.

    Google Scholar 

  37. [37]

    Z. Guo, F. H. Chu, J. Y. Fan, Z. Zhang, Z. L. Bian, G. F. Li, et al., “Study of macro-bending biconical tapered plastic optical fiber for relative humidity sensing,” Sensor Review, 2019, 39(3): 352–357.

    Article  Google Scholar 

  38. [38]

    M. Batumalay, S. W. Harun, N. Irawati, H. Ahmad, and H. Arof, “A study of relative humidity fiber-optic sensors,” IEEE Sensors Journal, 2014, 15(3): 1945–1950.

    ADS  Article  Google Scholar 

Download references

Acknowledgment

This work was funded by the Fund of Shanxi“133i” Project Key Subject Construction; National Science Foundation of Shanxi Province, China (Grant No. 201701D121065). This work is accomplished at the Science and Technology on Electronic Test & Measurement Laboratory, North University of China. The authors wish to thank the members of the Center for Micron and Nano research at the North University of China for the provision of technical support during the work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wenyi Liu.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Ghaffar, A., Hou, Y. et al. A Micro Structure POF Relative Humidity Sensor Modified With Agarose Based on Surface Plasmon Resonance and Evanescent Wave Loss. Photonic Sens (2020). https://doi.org/10.1007/s13320-020-0603-4

Download citation

Keywords

  • SPR
  • evanescent wave loss
  • agarose
  • RH sensor