Study of Temporal Thermal Response of Microfiber Bragg Grating

Abstract

Fiber Bragg grating has been successfully fabricated in the silica microfiber by the use of femtosecond laser point-by-point inscription. Temporal thermal response of the fabricated silica microfiber Bragg grating has been measured by the use of the CO2 laser thermal excitation method, and the result shows that the time constant of the microfiber Bragg grating is reduced by an order of magnitude compared with the traditional single-mode fiber Bragg grating and the measured time constant is ~ 21ms.

References

  1. [1]

    K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” Journal of Lightwave Technology, 1997, 15(8): 1263–1276.

    ADS  Article  Google Scholar 

  2. [2]

    Y. J. Rao, “In-fibre bragg grating sensors,” Measurement Science and Technology, 1997, 8(4): 355–375.

    ADS  Article  Google Scholar 

  3. [3]

    A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, et al., “Fiber grating sensors,” Journal of Lightwave Technology, 1997, 15(8): 1442–1463.

    ADS  Article  Google Scholar 

  4. [4]

    J. P. Dakin, D. J. Pratt, G. W. Bibby, and J. N. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electronics Letters, 1985, 21(13): 569–570.

    ADS  Article  Google Scholar 

  5. [5]

    E. Li, X. Wang, and C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes,” Applied Physics Letters, 2006, 89(9): 091119.

    ADS  Article  Google Scholar 

  6. [6]

    R. R. Dils, “High-temperature optical fiber thermometer,” Journal of Applied Physics, 1983, 54(3): 1198–1201.

    ADS  Article  Google Scholar 

  7. [7]

    C. Wang, J. He, J. C. Zhang, C. R. Liao, Y. Wang, W. Jin, et al., “Bragg gratings inscribed in selectively inflated photonic crystal fibers,” Optics Express, 2017, 25(23): 28442–28450.

    ADS  Article  Google Scholar 

  8. [8]

    C. Wang, J. C. Zhang, C. Z. Zhang, J. He, Y. C. Lin, W. Jin, et al., “Bragg gratings in suspended-core photonic microcells for high-temperature applications,” Journal of Lightwave Technology, 2018, 36(14): 2920–2924.

    ADS  Article  Google Scholar 

  9. [9]

    C. Liao, D. Wang, Y. Li, T. Sun, and K. T. V. Grattan, “Temporal thermal response of type II-IR fiber Bragg gratings,” Applied Optics, 2009, 48(16): 3001–3007.

    ADS  Article  Google Scholar 

  10. [10]

    G. Brambilla, V. Finazzi, and D. J. Richardson, “Ultra-low-loss optical fiber nanotapers,” Optics Express, 2004, 12(10): 2258–2263.

    ADS  Article  Google Scholar 

  11. [11]

    L. M. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, et al., “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature, 2003, 426(6968): 816–819.

    ADS  Article  Google Scholar 

  12. [12]

    C. Liao, Q. Wang, L. Xu, S. Liu, J. He, J. Zhao, et al., “D-shaped fiber grating refractive index sensor induced by an ultrashort pulse laser,” Applied Optics, 2016, 55(7): 1525–1529.

    ADS  Article  Google Scholar 

  13. [13]

    C. Lin, C. Liao, J. Wang, J. He, W. Ying, Z. Y. Li, et al., “Fiber surface Bragg grating waveguide for refractive index measurements,” Optics Letters, 2017, 42(9): 1684–1687.

    ADS  Article  Google Scholar 

  14. [14]

    X. Fang, C. Liao, and D. Wang, “Femtosecond laser fabricated fiber Bragg grating in microfiber for refractive index sensing,” Optics Letters, 2010, 35(7): 1007–1009.

    ADS  Article  Google Scholar 

  15. [15]

    T. Geernaert, K. Kalli, C. Koutsides, M. Komodromos, T. Nasilowski, W. Urbanczyk, et al., “Point-by-point fiber Bragg grating inscription in free-standing step-index and photonic crystal fibers using near-IR femtosecond laser,” Optics Letters, 2010, 35(10): 1647–1649.

    ADS  Article  Google Scholar 

  16. [16]

    Y. Zhang, B. Lin, S. C. Tjin, H. Zhang, G. Wang, P. Shum, et al., “Refractive index sensing based on higher-order mode reflection of a microfiber Bragg grating,” Optics Express, 2010, 18(25): 26345–26350.

    ADS  Article  Google Scholar 

  17. [17]

    Y. Ran, Y. Tan, L. Sun, S. Gao, J. Li, L. Jin, et al., “193nm excimer laser inscribed Bragg gratings in microfibers for refractive index sensing,” Optics Express, 2011, 19(19): 18577–18583.

    ADS  Article  Google Scholar 

  18. [18]

    A. J. C. Grellier, N. K. Zayer, and C. N. Pannell, “Heat transfer modelling in CO2 laser processing of optical fibres,” Optics Communications, 1998, 152(4–6): 324–328.

    ADS  Article  Google Scholar 

  19. [19]

    M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. Digiovanni, “The microfiber loop resonator: theory, experiment, and application,” Journal of Lightwave Technology, 2006, 24(1): 242–250.

    ADS  Article  Google Scholar 

  20. [20]

    R. W. Lewis, P. Nithiarasu, and K. N. Seetharamu, Fundamentals of the finite element methods for heat and fluid flow. England: John Wiley & Sons Ltd., 2004.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Changrui Liao.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liao, C., Yang, T. & Han, J. Study of Temporal Thermal Response of Microfiber Bragg Grating. Photonic Sens (2020). https://doi.org/10.1007/s13320-020-0602-5

Download citation

Keywords

  • Fiber optics sensors
  • fiber optics and optical communications
  • fiber optics components