Polarization-Insensitive Hybrid Plasmonic Waveguide Design for Evanescent Field Absorption Gas Sensor

Abstract

We propose a polarization-insensitive design of a hybrid plasmonic waveguide (HPWG) optimized at the 3.392 µm wavelength which corresponds to the absorption line of methane gas. The waveguide design is capable of providing high mode sensitivity (Smode) and evanescent field ratio (EFR) for both transverse electric (TE) and transverse magnetic (TM) hybrid modes. The modal analysis of the waveguide is performed via 2-dimension (2D) and 3-dimension (3D) finite element methods (FEMs). At optimized waveguide parameters, Smode and EFR of 0.94 and 0.704, can be obtained for the TE hybrid mode, respectively, whereas the TM hybrid mode can offer Smode and EFR of 0.86 and 0.67, respectively. The TE and TM hybrid modes power dissipation of ~3 dB can be obtained for a 20-µm-long hybrid plasmonic waveguide at the 60% gas concentration. We believe that the highly sensitive waveguide scheme proposed in this work overcomes the limitation of the polarization controlled light and can be utilized in gas sensing applications.

References

  1. [1]

    Y. F. Chou Chau, C. T. Chou Chao, H. J. Huang, M. R. Rahimi Kooh, N. T. R. N. Kumara, C. M. Lim, et al., “Perfect dual-band absorber based on plasmonic effect with the cross-hair/nanorod combination,” Nanomaterials, 2020, 10(3): 493-1–493–15.

    Article  Google Scholar 

  2. [2]

    M. A. Butt, N. L. Kazanskiy, and S. N. Khonina, “Highly sensitive refractive index sensor based on plasmonic bow tie configuration,” Photonic Sensors, 2020, 10(3): 223–232.

    ADS  Article  Google Scholar 

  3. [3]

    Y. F. Chou Chau, C. T. Chou Chao, C. M. Lim, H. J. Huang, and H. P. Chiang, “Deploying tunable metal-shell/dielectric core nanorod arrays as the virtually perfect absorber in the near-infrared regime,” ACS Omega, 2018, 3(7): 7508–7518.

    Article  Google Scholar 

  4. [4]

    Y. F. Chou Chau, C. T. Chou Chao, H. P. Chiang, C. M. Lim, N. Y. Voo, and A. H. Mahadi, “Plasmonic effects in composite metal nanostructures for sensing applications,” Journal of Nanoparticle Research, 2018, 20(7): 190-1–190–13.

    ADS  Google Scholar 

  5. [5]

    H. H. Qazi, A. B. Mohammad, and M. Akram, “Recent progress in optical chemical sensors,” Sensors, 2012, 12(12): 16522–16556.

    Article  Google Scholar 

  6. [6]

    P. Gruber, M. P. C. Marques, N. Szita, and T. Mayr, “Integration and application of optical chemical sensors in microbioreactors,” Lab on a Chip, 2017, 17(16): 2693–2712.

    Article  Google Scholar 

  7. [7]

    M. Majdinasab, K. Mitsubayashi, and J. L. Marty, “Optical and electrochemical sensors and biosensors for the detection of quinolones,” Trends in Biotechnology, 2019, 37(8): 898–915.

    Article  Google Scholar 

  8. [8]

    J. Hodgkinson and R. P. Tatam, “Optical gas sensing: a review,” Measurement Science and Technology, 2013, 24(1): 012004-1–012004–59.

    ADS  Article  Google Scholar 

  9. [9]

    J. Y. Jo, Y. S. Kwon, J. W. Lee, J. S. Park, B. H. Rho, and W. II. Choi, “Acute respiratory distress due to methane inhalation,” Tuberculosis and Respiratory Diseases, 2013, 74(3): 120–123.

    Article  Google Scholar 

  10. [10]

    J. G. Speight, Chapter 2: origin and production in natural gas: a basic handbook. Oxford: Gulf Professional Publishing, 2018: 25–57.

    Google Scholar 

  11. [11]

    M. A. Butt, S. N. Khonina, and N. L. Kazanskiy, “Silicon on silicon dioxide slot waveguide evanescent field gas absorption sensor,” Journal of Modern Optics, 2018, 65(2): 174–178.

    ADS  MathSciNet  Article  Google Scholar 

  12. [12]

    M. A. Butt, S. N. Khonina, and N. L. Kazanskiy, “Modelling of Rib channel waveguides based on silicon-on-sapphire at 4.67 µm wavelength for evanescent field gas absorption sensor,” Optik, 2018, 168: 692–697.

    ADS  Article  Google Scholar 

  13. [13]

    M. A. Butt, S. A. Degtyarev, S. N. Khonina, and N. L. Kazanskiy, “An evanescent field absorption gas sensor at mid-IR 3.39 µm wavelength,” Journal of Modern Optics, 2017, 64(18): 1892–1897.

    ADS  MathSciNet  Article  Google Scholar 

  14. [14]

    A. Novack, M. Streshinsky, R. Ding, Y. Liu, A. E. J. Lim, G. Q. Lo, et al., “Progress in silicon platforms for integrated optics,” Nanophotonics, 2014, 3(4–5): 205–214.

    Article  Google Scholar 

  15. [15]

    M. A. Butt, S. N. Khonina, and N. L. Kazanskiy, “Optical elements based on silicon photonics,” Computer Optics, 2019, 43(6): 1079–1083.

    ADS  Article  Google Scholar 

  16. [16]

    B. L. Bachim and T. K. Gaylord, “Polarization-dependent loss and birefringence in long-period fiber gratings,” Applied Optics, 2003, 42(34): 6816–6823.

    ADS  Article  Google Scholar 

  17. [17]

    M. Kumar, “Polarization insensitive hollow optical waveguide,” Optics Communications, 2012, 285(9): 2360–2362.

    ADS  Article  Google Scholar 

  18. [18]

    T. Baba and Y. Kokubun, “New polarization-insensitive antiresonant reflecting optical waveguide,” IEEE Photonics Technology Letters, 1989, 1(8): 232–234.

    ADS  Article  Google Scholar 

  19. [19]

    Q. Han, J. St-Yves, Y. Chen, M. Menard, and W. Shi, “Polarization-insensitive silicon nitride arrayed waveguide grating,” Optics Letters, 2019, 44(16): 3976–3979.

    ADS  Article  Google Scholar 

  20. [20]

    N. L. Kazanskiy, S. N. Khonina, and M. A. Butt, “Plasmonic sensors based on Metal-insulator-metal waveguides for refractive index sensing applications: A brief review,” Physica E: Low-Dimensional Systems and Nanostructures, 2020, 117: 113798-1–113798–10.

    Article  Google Scholar 

  21. [21]

    M. A. Butt, S. N. Khonina, and N. L. Kazanskiy, “A multichannel metallic dual nano-wall square split-ring resonator: design analysis and applications,” Laser Physics Letters, 2019, 16(12): 126201-1–126201–7.

    ADS  Article  Google Scholar 

  22. [22]

    N. T. R. N. Kumara, Y. F. Chou Chau, J. W. Huang, H. J. Huang, C. T. Lin, and H. P. Chiang, “Plasmonic spectrum on 1D and 2D periodic arrays of rod-shape metal nanoparticle pairs with different core patterns for biosensor and solar cell applications,” Journal of Optics, 2016, 18(11): 115003-1–115003–7.

    ADS  Article  Google Scholar 

  23. [23]

    Y. F. Chou Chau, K. H. Chen, H. P. Chiang, C. M. Lim, H. J. Huang, C. H. Lai, et al., “Fabrication and characterization of a metallic-dielectric nanorod array by nanosphere lithography for plasmonic sensing application,” Nanomaterials, 2019, 9(12): 1691-1–1691–15.

    Article  Google Scholar 

  24. [24]

    Y. Fang and M. Sun, “Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits,” Light: Science and Applications, 2015, 4(6): e294-1–e294–11.

    ADS  Article  Google Scholar 

  25. [25]

    M. A. Butt, S. N. Khonina, and N. L. Kazanskiy, “Ultra-short lossless plasmonic power splitter design based on metal-insulator-metal waveguide,” Laser Physics, 2019, 30(1): 016201-1–016201–6.

    ADS  Google Scholar 

  26. [26]

    Y. F. Chou Chau, C. T. Chou Chao, H. J. Huang, U. Anwar, C. M. Lim, N. Y. Voo, et al., “Plasmonic perfect absorber based on metal nanorod arrays connected with veins,” Results in Physics, 2019, 15: 102567-1–102567–6.

    Article  Google Scholar 

  27. [27]

    M. A. Butt, S. N. Khonina, and N. L. Kazanskiy, “A plasmonic colour filter and refractive index sensor applications based on metal-insulator-metal square µ-ring cavities,” Laser Physics, 2020, 30(1): 016205-1–016205–5.

    ADS  Google Scholar 

  28. [28]

    D. Chandler-Horowitz, “High-accuracy, midinfrared (450 cm−1ω≤4000 cm−1) refractive index values of silicon,” Journal of Applied Physics, 2005, 97(12): 123526-1–123526–8.

    ADS  Article  Google Scholar 

  29. [29]

    I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” Journal of the Optical Society of America, 1965, 55(10): 1205–1209.

    ADS  Article  Google Scholar 

  30. [30]

    R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S. H. Oh, G. D. Boreman, et al., “Optical dielectric function of gold,” Physical Review B, 2012, 86(23): 235147-1–235147–9.

    ADS  Article  Google Scholar 

  31. [31]

    M. Odeh, K. Twayana, K. Sloyan, J. E. Villegas, S. Chandran, and M. S. Dahlem, “Mode sensitivity analysis of subwavelength grating slot waveguides,” IEEE Photonics Journal, 2019, 11(5): 2700210-1–2700210-10.

    Article  Google Scholar 

  32. [32]

    D. F. Swinehart, “The beer-lambert law,” Journal of Chemical Education, 1962, 39(7): 333–335.

    ADS  Article  Google Scholar 

  33. [33]

    S. M. Babin and R. M. Sova, “Preliminary development of a fiber optic sensor for measuring bilirubin,” Analytical Chemistry Insights, 2014, 9: 59–65.

    Article  Google Scholar 

  34. [34]

    S. N. Khonina, N. L. Kazanskiy, and M. A. Butt, “Evanescent field ratio enhancement of a modified ridge waveguide structure for methane gas sensing application,” IEEE Sensors Journal, 2020, 20(15): 8469–8476.

    ADS  Article  Google Scholar 

  35. [35]

    Y. Qiao, J. Tao, C. H. Chen, J. Qiu, Y. Tian, X. Hong, et al., “A minature on-chip methane sensor based on an ultra-low loss waveguide and a micro-ring resonator filter,” Micromachines, 2017, 8(15): 160-1–160-9.

    Google Scholar 

  36. [36]

    C. Ranacher, C. Consani, N. Vollert, A. Tortschanoff, M. Bergmeister, T. Grille, et al., “Characterization of evanescent field gas sensor structures based on silicon photonics,” IEEE Photonics Journal, 2018, 10(5): 2700614-1–2700614–14.

    Article  Google Scholar 

Download references

Acknowledgment

This work was financially supported by the Russian Foundation for Basic Research (Grant No. 16-29-09528_ofi_m) for numerical calculations, by the Ministry of Science and Higher Education within the State assignment FSRC «Crystallography and Photonics» RAS (Grant No. 007-GZ/Ch3363/26) for theoretical results.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Muhammad Ali Butt.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kazanskiy, N.L., Khonina, S.N. & Butt, M.A. Polarization-Insensitive Hybrid Plasmonic Waveguide Design for Evanescent Field Absorption Gas Sensor. Photonic Sens (2020). https://doi.org/10.1007/s13320-020-0601-6

Download citation

Keywords

  • Hybrid plasmonic waveguide
  • finite element method
  • methane gas
  • evanescent field absorption gas sensor
  • polarization-insensitive