Mach-Zehnder Interferometer for High Temperature (1000 °C) Sensing Based on a Few-Mode Fiber

Abstract

A Mach-Zehnder interferometer (MZI) for high temperature (1000 °C) sensing based on few mode fiber (FMF) was proposed and experimentally demonstrated. The sensor was fabricated by fusing a section of FMF between two single-mode fibers (SMFs). The structure was proven to be an excellent high temperature sensor with good stability, repeatability, and high temperature sensitivity (48.2 pm/C) after annealing process at a high temperature lasting some hours, and a wide working temperature range (from room temperature to 1000 C). In addition, the simple fabrication process and the low cost offered a great potential for sensing in high temperature environments.

References

  1. [1]

    F. T. S. Yu, P. B. Ruffin, and S. Yin, “Fiber optic sensors” New York: CRC Press, 2008.

    Google Scholar 

  2. [2]

    D. Liu, A. K. Mallik, J. Yuan, C. Yu, G. Farrell, Y. Semenova, et al., “High sensitivity refractive index sensor based on a tapered small core single-mode fiber structure,” Optics Letters, 2015, 40(17): 4 166–4 169.

    Article  Google Scholar 

  3. [3]

    W. Yu, T. Lang, J. Bian, and W. Kong, “Label-free fiber optic biosensor based on thin-core modal interferometer,” Sensors and Actuators B: Chemical, 2016, 228(2): 322–329.

    Article  Google Scholar 

  4. [4]

    G. Brambilla, “High-temperature fibre Bragg grating thermometer,” Electronics Letters, 2002, 38(17): 954–956.

    ADS  Article  Google Scholar 

  5. [5]

    S. R. Baker, H. N. Rourke, V. Baker, and D. Goodchild, “Thermal decay of fiber Bragg gratings written in boron and germanium codoped silica fiber,” Journal of Lightwave Technology, 1997, 15(8): 1470–1477.

    ADS  Article  Google Scholar 

  6. [6]

    S. Li-Yang, T. Wang, J. Canning, K. Cook, and T. Hwa-Yaw, “Bulk regeneration of optical fiber Bragg gratings,” Applied Optics, 2012, 51(30): 7 165–7 169.

    Article  Google Scholar 

  7. [7]

    J. E. Antonio-Lopez, Z. S. Eznaveh, P. LiKamWa, A. Schülzgen, and R. Amezcua-Correa, “Multicore fiber sensor for high-temperature applications up to 1000 °C,” Optics Letters, 2014, 39(15): 4 309–4 312.

    Article  Google Scholar 

  8. [8]

    J. Zhu, A. Zhang, T. H. Xia, S. He, and W. Xue, “Fiber-optic high-temperature sensor based on thin-core fiber modal interferometer,” IEEE Sensors Journal, 2010, 10(9): 1 415–1 418.

    Article  Google Scholar 

  9. [9]

    Y. Liu, S. Qu, and Y. Li, “Single microchannel high-temperature fiber sensor by femtosecond laser-induced water breakdown,” Optics Letters, 2013, 38(3): 335–337.

    ADS  Article  Google Scholar 

  10. [10]

    Y. Zhang, L. Yuan, X. Lan, A. Kaur, J. Huang, and H. Xiao, “High-temperature fiber-optic Fabry-Perot interferometric pressure sensor fabricated by femtosecond laser,” Optics Letters, 2013, 38(22): 4 609–4 612.

    ADS  Article  Google Scholar 

  11. [11]

    P. Rugeland and W. Margulis, “Revisiting twin-core fiber sensors for high-temperature measurements,” Applied Optics, 2012, 51(25): 6 227–6 232.

    Article  Google Scholar 

  12. [12]

    G. Coviello, V. Finazzi, J. Villatoro, and V. Pruneri, “Thermally stabilized PCF-based sensor for temperature measurements up to 1000 °,” Optics Express, 2009, 17(24): 21 551–21 559.

    Article  Google Scholar 

  13. [13]

    C. Wu, H. Y. Fu, K. K. Qureshi, B. O. Guan, and H. Y. Tam, “High-pressure and high-temperature characteristics of a Fabry-Perot interferometer based on photonic crystal fiber,” Optics Letters, 2011, 36(3): 412–414.

    ADS  Article  Google Scholar 

  14. [14]

    M. Janik, M. Koba, P. Mikulic, W. J. Bock, and M. Smietana, “Combined long-period grating and micro-cavity in-line Mach-Zehnder interferometer for refractive index sensing,” in 2017 25th Optical Fiber Sensors Conference (OFS), Korea, April 24–28, 2017, pp. 1–4.

  15. [15]

    Y. Liu and L. Wei, “Low-cost high-sensitivity strain and temperature sensing using graded-index multimode fibers,” Applied Optics, 2007, 46(13): 2 516–2 519.

    Article  Google Scholar 

  16. [16]

    D. Liu, Q. Wu, C. Mei, J. Yuan, X. Xin, A. K. Mallik, et al., “Hollow core fiber based interferometer for high-temperature (1000°C) measurement,” Journal of Lightwave Technology, 2017, 36(9): 1 583–1 590.

    Article  Google Scholar 

  17. [17]

    X. Zhan, Y. P. Liu, M. Tang, L. Ma, R. X. Wang, L. Duan, et al., “Few-mode multicore fiber enabled integrated Mach-Zehnder interferometers for temperature and strain discrimination,” Optics Express, 2018, 26(12): 15 332–15 342.

    Article  Google Scholar 

  18. [18]

    C. X. Lu, J. Su, X. P. Dong, L. H. Lu, T. Sun, and K. T. V. Grattan, “Studies on temperature and strain sensitivities of a few-mode critical wavelength fiber optic sensor,” Journal of Lightwave Technology, 2018, 19(5): 1 794–1 801.

    Google Scholar 

  19. [19]

    T. Huang, X. Shao, Z. Wu, Y. Sun, J. Zhang, H. Q. Lam, et al., “A sensitivity enhanced temperature sensor based on highly Germania-doped few-mode fiber,” Optics Communications, 2014, 324: 53–57.

    ADS  Article  Google Scholar 

  20. [20]

    L. V. Nguyen, D. Hwang, S. Moon, D. S. Moon, and Y. Chung, “High temperature fiber sensor with high sensitivity based on core diameter mismatch,” Optics Express, 2008, 16(15): 11 369–11 375.

    Article  Google Scholar 

  21. [21]

    B. Dong, D. Zhou, L. Wei, W. Liu, and J. Li, “Temperature- and phase-independent lateral force sensor based on a core-offset multi-mode fiber interferometer,” Optics Express, 2008, 16(23): 19 291–19 296.

    Article  Google Scholar 

  22. [22]

    D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, “Long-term thermal stability tests at 1000°C of silica fibre Bragg grating made with ultrafast laser radiation,” Measurement Science and Technology, 2006, 17(5): 1 009–1 013.

    Article  Google Scholar 

Download references

Acknowledgment

This work was funded by the National Natural Science Foundation of China (NSFC) (Grant Nos. 41266001, 61665007, and 61865013); National Key Research and Development Project from the Ministry of Science and Technology (Grant No. 2018YFE0115700); Science and Technology Project of Jiangxi Education Department (Grant No. GJJ180518); Nanchang Hangkong University graduate student innovation special fund project (Grant No. YC2019053).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bin Liu.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

This article is published with open access at Springerlink.com

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Luo, C., Yang, H. et al. Mach-Zehnder Interferometer for High Temperature (1000 °C) Sensing Based on a Few-Mode Fiber. Photonic Sens (2020). https://doi.org/10.1007/s13320-020-0596-z

Download citation

Keywords

  • Mach-Zehnder interferometer
  • annealing process
  • few mode fiber
  • high temperature sensing