Two-Dimensional Tunable and Temperature-Insensitive Lyot Filter for FM-to-AM Compensation

Abstract

Utilizing polarization maintaining photonic crystal fiber (PM-PCF) with the low temperature coefficient of birefringence, a two-dimensional tunable and temperature-insensitive Lyot filter aiming to compensate the frequency modulation to amplitude modulation (FM-to-AM) conversion in high power laser facility is demonstrated. The Jones matrix is applied to analyze the relationship between optical characteristics of the filter and physical parameters (including amplitude ratio, phase delay, and susceptibility of the birefringence to temperature) of the polarization optical field. Both the transmission peak wavelength and extinction ratio of the spectral transmission are able to be changed simultaneously, hence, it shows more efficient FM-to-AM compensation ability. Besides, the transmission peak shift is about 18pm/°C with the PM-PCF configuration, which is about two orders of magnitude less than the normal polarization maintaining fiber (PMF) configuration. The demonstrated filter presents a practical application potential in large scale laser driven facility.

References

  1. [1]

    J. Rothenberg, D. Browning, and R. Wilcox, “Issue of FM to AM conversion on the national ignition facility,” in Third International Conference on Solid State Lasers for Application to Inertial Confinement Fusion, Monterey, CA, United States, 1999, pp. 51–61.

  2. [2]

    J. D. Lindl, P. Amendt, and R. L. Berger, “The physics basis for ignition using indirect-drive targets on the national ignition facility,” Physics of Plasmas, 2004, 11(2): 339–491.

    ADS  Article  Google Scholar 

  3. [3]

    S. Hocquet, D. Penninckx, E. Bordenave, C. Gouédard, and Y. Jaouën, “FM-to-AM conversion in high-power lasers,” Applied Optics, 2008, 47(18): 3338–3349.

    ADS  Article  Google Scholar 

  4. [4]

    W. G. Zheng, X. F. Wei, Q. H. Zhu, F. Jing, D. X. Hu, X. D. Yuan, et al., “Laser performance upgrade for precise ICF experiment in SO-III laser facility,” Matter and Radiation at Extremes, 2017, 2(5): 243–255.

    Article  Google Scholar 

  5. [5]

    C. Dorrer, A. V Okishev, R. O. Roides, R. Cuffney, W. Bittle, and J. D. Zuegel, “Fiber front end for an OMEOA EP demonstration of beam-smoothing techniques for NIF polar-drive ignition,” in Conference on Lasers and Electro-Optics 2012, San Jose, California, USA, May, 2012, pp. CTu3M.2.

  6. [6]

    J. F. Oleyze, J. Hares, S. Vidal, N. Beck, J. Dubertrand, and A. Perrin, “Recent advances in the front-end sources of the LMJ fusion laser,” in High Power Lasers for Fusion Research, San Francisco, California, USA, February, 2011, pp. 79160I.

  7. [7]

    D. P. Xu, X. C. Tian, D. D. Zhou, Z. Y. Zong, M. Q. Fan, R. Zhang, et al., “Temporal pulse precisely sculpted millijoule-level fiber laser injection system for high-power laser driver,” Applied Optics, 2017, 56(10): 2661–2666.

    ADS  Article  Google Scholar 

  8. [8]

    R. Li, W. Fan, Y. E. Jiang, Z. Qiao, P. Zhang, and Z. Q. Lin, “Tunable compensation of OVD-induced FM-AM conversion in the front end of high-power lasers,” Applied Optics, 2017, 56(4): 993–998.

    ADS  Article  Google Scholar 

  9. [9]

    Z. Qiao, X. C. Wang, W. Fan, X. C. Li, Y. E. Jiang, R. Li, et al., “Suppression of FM-to-AM modulation by polarizing fiber front end for high-power lasers,” Applied Optics, 2016, 55(29): 8352–8358.

    ADS  Article  Google Scholar 

  10. [10]

    D. P. Xu, J. J. Wang, M. Z. Li, H. Lin, R. Zhang, Y. Deng, et al., “Weak et alon effect in wave plates can introduce significant FM-to-AM modulations in complex laser systems,” Optics Express, 2010, 18(7): 6621–6627.

    ADS  Article  Google Scholar 

  11. [11]

    Z. Y. Chen, Y. E. Jiang, J. F. Wang, W. Fan, and X. C. Li, “Compensation system for FM-to-AM effects in high-power laser system,” in Applied Optics and Photonics China, AOPC 2015, Beijing, China, 2015, pp. 9671.

  12. [12]

    D. P. Xu, Z. H. Huang, J. J. Wang, M. Z. Li, H. H. Lin, R. Zhang, et al., “A fiber-based polarization-rotation filter utilized to suppress the FM-to-AM effect in a large-scale laser facility,” Journal of Optics, 2013, 15(8): 085702: 1–4.

    ADS  Article  Google Scholar 

  13. [13]

    S. Vidal, J. Luce, and D. Penninckx, “Experimental demonstration of linear precompensation of a nonlinear transfer function due to second-harmonic generation,” Optics Letters, 2011, 36(1): 88–90.

    ADS  Article  Google Scholar 

  14. [14]

    M. X. Wang, S. N. Fu, P. Shum, N. Q. Ngo, J. Wu, and J. T. Lin, “A tunable Lyot birefringent filter with variable channel spacing and wavelength using nonlinear polarization rotation in an SOA”, IEEE Photonics Technology Letters, 2008, 20(18): 1527–1529.

    ADS  Article  Google Scholar 

  15. [15]

    D. Penninckx, N. Beck, J. F. Oleyze, and L. Videau, “Signal propagation over polarization-maintaining fibers: problem and solutions,” Journal of Lightwave Technology, 2006, 24(11): 4197–4207.

    ADS  Article  Google Scholar 

  16. [16]

    S. Liu, F. P. Yan, F. Ting, L. N. Zhang, Z. Y. Bai, W. O. Han, et al., “Multi-wavelength thulium-doped fiber laser using a fiber-based Lyot filter,” IEEE Photonics Technology Letters, 2016, 28(8): 864–867.

    ADS  Article  Google Scholar 

  17. [17]

    J. R. Simpson, R. H. Stolen, F. M. Sears, W. Pleibel, J. B. Macchesney, and R. E. Howard, “A single-polarization fiber,” Journal of Lightwave Technology, 1983, 1(2): 370–374.

    ADS  Article  Google Scholar 

  18. [18]

    D. A. Nolan, O. E. Berkey, M. J. Li, X. Chen, W. A. Wood, and L. A. Zenteno, “Single-polarization fiber with a high extinction ratio,” Optics Letters, 2004, 29(16): 1855–1857.

    ADS  Article  Google Scholar 

  19. [19]

    H. Sunnerud, C. J. Xie, M. Karlsson, R. Samuelsson, and P. A. Andrekson, “A comparison between different PMD compensation techniques,” Journal of Lightwave Technology, 2002, 20(3): 368.

    ADS  Article  Google Scholar 

  20. [20]

    D. H. Goldstein, Polarized light. Florida: CRC Press, 2011.

    Google Scholar 

  21. [21]

    T. Martynkien, M. Szpulak, and W. Urbanczyk, “Modeling and measurement of temperature sensitivity in birefringent photonic crystal holey fibers,” Applied Optics, 2005, 44(36): 7780–7788.

    ADS  Article  Google Scholar 

  22. [22]

    L. Lu, Y. H. Yang, and H. Y. Li, “Study of polarization-maintaining photonic crystal fibers with zero birefringent temperature sensitive coefficient,” Acta Optica Sinica, 2015, 35(10): 1006006.

    Article  Google Scholar 

  23. [23]

    C. L. Zhao, X. F. Yang, C. Lu, W. Jin, and M. S. Demokan, “Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photonics Technology Letters, 2004, 16(11): 2535–2537.

    ADS  Article  Google Scholar 

  24. [24]

    O. W. Fu, Y. P. Li, X. H. Fu, W. Jin, and W. H. Bi, “Temperature insensitive curvature sensor based on cascading photonic crystal fiber,” Optical Fiber Technology, 2018, 41: 64–68.

    ADS  Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the Science and Technology Major Project of Guangxi (Grant No. AA18118032) and Laser Fusion Research Center Funds for Young Talents (Grant No. RCFCZ3-2019-7).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dangpeng Xu.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fan, M., Tian, X., Zhou, D. et al. Two-Dimensional Tunable and Temperature-Insensitive Lyot Filter for FM-to-AM Compensation. Photonic Sens (2020). https://doi.org/10.1007/s13320-020-0591-4

Download citation

Keywords

  • Laser fusion
  • optical fiber devices
  • frequency modulation
  • birefringence
  • optical filters