Quantitative Measurement of γ-Ray and e-Beam Effects on Fiber Rayleigh Scattering Coefficient


The effects of gamma ray (γ-ray) radiation and electron beam (e-beam) radiation on Rayleigh scattering coefficient in single-mode fiber are experimentally investigated. Utilizing an optical time domain reflectometry (OTDR), the power distribution curves of the irradiated fibers are obtained to retrieve the corresponding radiation-induced attenuation (RIA). Based on the backscattering power levels and the measured RIAs, the Rayleigh scattering coefficients can be characterized quantitatively for each fiber sample. Under the given radiation conditions, Rayleigh scattering coefficients have been changed very little while RIAs have been changed significantly. Furthermore, simulations have been implemented to verify the validity of the measured Rayleigh scattering coefficient, including the splicing points.


  1. [1]

    A. T. Young, “Rayleigh scattering,” Applied Optics, 1981, 20(4): 533–535.

    ADS  Article  Google Scholar 

  2. [2]

    L. Rayleigh, “XXXIV. On the transmission of light through an atmosphere containing small particles in suspension, and on the origin of the blue of the sky,” The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1899, 47(287): 375–384.

    Article  Google Scholar 

  3. [3]

    S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, et al., “Random distributed feedback fibre laser,” Nature Photonics, 2010, 4(4): 231.

    ADS  Article  Google Scholar 

  4. [4]

    Z. N. Wang, H. Wu, M. Fan, L. Zhang, Y. Rao, W. Zhang, et al., “High power random fiber laser with short cavity length: theoretical and experimental investigations,” IEEE Journal of Selected Topics in Quantum Electronics, 2014, 21(1): 10–15.

    ADS  Article  Google Scholar 

  5. [5]

    D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, et al., “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Physical Review A, 2010, 82(3): 033828.

    ADS  Article  Google Scholar 

  6. [6]

    X. Wang, D. Chen, H. Li, L. She, and Q. Wu, “Random fiber laser based on artificially controlled backscattering fibers,” Applied Optics, 2018, 57(2): 258–262.

    ADS  Article  Google Scholar 

  7. [7]

    Z. N. Wang, L. Zhang, S. Wang, N. T. Xue, F. Peng, M. Q. Fan, et al., “Coherent Φ-OTDR based on I/Q demodulation and homodyne detection,” Optics Express, 2016, 24(2): 853–858.

    ADS  Article  Google Scholar 

  8. [8]

    Z. N. Wang, B. Zhang, J. Xiong, Y. Fu, S. T. Lin, J. L. Jiang, et al., “Distributed acoustic sensing based on pulse-coding phase-sensitive OTDR,” IEEE Internet of Things Journal, 2019, 6(4): 6117–6124.

    Article  Google Scholar 

  9. [9]

    S. Wang, X. Fan, Q. Liu, and Z. He, “Distributed fiber-optic vibration sensing based on phase extraction from time-gated digital OFDR,” Optics Express, 2015, 23(26): 33301–33309.

    ADS  Article  Google Scholar 

  10. [10]

    S. Loranger, M. Gagné, V. Lambin-Iezzi, and R. Kashyap, “Rayleigh scatter based order of magnitude increase in distributed temperature and strain sensing by simple UV exposure of optical fibre,” Scientific Reports, 2015, 5: 11177.

    ADS  Article  Google Scholar 

  11. [11]

    A. Yan, S. Huang, S. Li, R. Chen, P. Ohodnicki, M. Buric, et al., “Distributed optical fiber sensors with ultrafast laser enhanced Rayleigh backscattering profiles for real-time monitoring of solid oxide fuel cell operations,” Scientific Reports, 2017, 7(1): 9360.

    ADS  Article  Google Scholar 

  12. [12]

    A. Hartog, “A distributed temperature sensor based on liquid-core optical fibers,” Journal of Lightwave Technology, 1983, 1(3): 498–509.

    ADS  Article  Google Scholar 

  13. [13]

    D. Johlen, P. Knappe, H. Renner, and E. Brinkmeyer, “UV-induced absorption, scattering and transition losses in UV side-written fibers,” OFC/IOOC., San Diego, CA, USA, Feb. 21, 1999, 3: 50–52.

  14. [14]

    P. L. Mattem, L. M. Watkins, C. D. Skoog, J. R. Brandon, and E. H. Barsis, “The effects of radiation on the absorption and luminescence of fiber optic waveguides and materials,” IEEE Transactions on Nuclear Science, 1974, 21(6): 81–95.

    ADS  Article  Google Scholar 

  15. [15]

    E. J. Friebele, “Optical fiber waveguides in radiation environments,” Optical Engineering, 1979, 18(6): 186552.

    Article  Google Scholar 

  16. [16]

    M. Kyoto, Y. Chigusa, M. Ohe, H. Go, M. Watanabe, T. Matsubara, et al., “Gamma-ray radiation hardened properties of pure silica core single-mode fiber and its data link system in radioactive environments,” Journal of Lightwave Technology, 1992, 10(3): 289–294.

    ADS  Article  Google Scholar 

  17. [17]

    H. Henschel, O. Kohn, H. U. Schmidt, E. Bawirzanski, and A. Landers, “Optical fibres for high radiation dose environments,” IEEE Transactions on Nuclear Science, 1994, 41(3): 510–516.

    ADS  Article  Google Scholar 

  18. [18]

    W. Primak, “Fast-neutron-induced changes in quartz and vitreous silica,” Physical Review, 1958, 110(6): 1240.

    ADS  Article  Google Scholar 

  19. [19]

    S. Girard, J. Kuhnhenn, A. Gusarov, B. Brichard, M. Van Uffelen, Y. Ouerdane, et al., “Radiation effects on silica-based optical fibers: Recent advances and future challenges,” IEEE Transactions on Nuclear Science, 2013, 60(3): 2015–2036.

    ADS  Article  Google Scholar 

  20. [20]

    S. Rizzolo, A. Boukenter, E. Marin, M. Cannas, J. Perisse, S. Bauer, et al., “Vulnerability of OFDR-based distributed sensors to high γ-ray doses,” Optics Express, 2015, 23(15): 18997–19009.

    ADS  Article  Google Scholar 

  21. [21]

    C. Sabatier, S. Rizzolo, A. Morana, T. Allanche, T. Robin, B. Cadier, et al., “6-mev electron exposure effects on OFDR-based distributed fiber-based sensors,” IEEE Transactions on Nuclear Science, 2018, 65(8): 1598–1603.

    ADS  Article  Google Scholar 

  22. [22]

    J. Wu, L. Ma, F. Tu, and Z. He, “Investigation of radiation effect on single-mode fiber for distributed radiation sensing application,” in 2018 Asia Communications and Photonics Conference (ACP), Hangzhou, China, Oct. 26–29, 2018, pp. 1–3.

  23. [23]

    Z. N. Wang, M. Q. Fan, L. Zhang, H. Wu, D. V. Churkin, Y. Li, et al., “Long-range and high-precision correlation optical time-domain reflectometry utilizing an all-fiber chaotic source,” Optics Express, 2015, 23(12): 15514–15520.

    ADS  Article  Google Scholar 

  24. [24]

    L. B. Liokumovich, N. A. Ushakov, O. I. Kotov, M. A. Bisyarin, and A. H. Hartog, “Fundamentals of optical fiber sensing schemes based on coherent optical time domain reflectometry: Signal model under static fiber conditions,” Journal of Lightwave Technology, 2015, 33(17): 3660–3671.

    ADS  Article  Google Scholar 

Download references


This work was supported by the National Natural Science Foundation of China (Grant Nos. 41527805 and 61635005), Sichuan Youth Science and Technology Foundation (Grant No. 2016JQ0034), and the 111 Project (Grant No. B14039). The Romanian authors acknowledge the support of the Romanian Executive Agency for Higher Education, Research, Development and Innovation Funding (Grant No. UEFISCDI), under the contract “Sensor Systems for Secure Operation of Critical Installations”. G. Peng acknowledges the support by Science and Technology Commission of Shanghai Municipality, China (Grant Nos. SKLSFO2015-01 and 15220721500) and by the Hisilicon Innovation Research Program (HIRP) (Grant No. HO2017050001CZ).

Author information



Corresponding author

Correspondence to Zinan Wang.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Li, J., Wang, Z. et al. Quantitative Measurement of γ-Ray and e-Beam Effects on Fiber Rayleigh Scattering Coefficient. Photonic Sens (2020). https://doi.org/10.1007/s13320-020-0580-7

Download citation


  • Gamma ray
  • electron beam
  • Rayleigh scattering
  • radiation-induced attenuation
  • Rayleigh scattering coefficient