Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Photonic Sensors
  3. Article

Effect of Temperature and Gamma-Ray Irradiation on Optical Characteristics of Fiber Bragg Grating Inscribed Radiation-Resistant Optical Fiber

  • Regular
  • Open access
  • Published: 24 October 2019
  • volume 10, pages 16–33 (2020)
Download PDF

You have full access to this open access article

Photonic Sensors Aims and scope Submit manuscript
Effect of Temperature and Gamma-Ray Irradiation on Optical Characteristics of Fiber Bragg Grating Inscribed Radiation-Resistant Optical Fiber
Download PDF
  • Seongmin Ju1,
  • Youngwoong Kim2,
  • Kadathala Linganna2,
  • Yune Hyoun Kim2 &
  • …
  • Won-Taek Han1 
  • 780 Accesses

  • 5 Citations

  • Explore all metrics

  • Cite this article

Abstract

A new radiation-hard germano-silicate glass optical fiber with a pure silica glass buffer and a boron-doped silica glass inner cladding was fabricated for temperature sensor application based on the fiber Bragg grating (FBG) under γ-ray irradiation environment. The temperature dependences of optical attenuation at 1550.5 nm and Bragg reflection wavelength shift from 18 °C to 40 °C before the γ-ray irradiation were about 4.57×10−4 dB/ °C and 5.48 pm/ °C, respectively. The radiation-induced optical attenuation at 1550.5 nm and the radiation-induced Bragg reflection wavelength shift under the γ-ray irradiation with the total dose of 22.85kGy at 35 °C were about 0.03dB/m and 0.12nm, respectively, with the γ-ray irradiation sensitivity of 5.25×10−3 pm/Gy. The temperature and the γ-ray irradiation dependence of optical attenuation at 1550.5nm in the FBG written fiber with boron-doped silica glass inner cladding were about 6 times and 4 times lower than that in the FBG written fiber without boron-doped silica glass inner cladding under a temperature change from 18 °C to 40 °C and the γ-ray irradiation with the total dose of 22.85 kGy at 35 °C, respectively. Furthermore, the effect of temperature increase on the Bragg reflection wavelength of the FBG written fiber with boron-doped silica inner cladding was much larger about 1000 times than that of the γ-ray irradiation. However, no influence on the reflection power of the Bragg wavelengths and the full width at half maximum (FWHM) bandwidth under temperature and the γ-ray irradiation change was found. Also, after the γ-ray irradiation with the dose of 22.85kGy, no significant change in the refractive index was found but the residual stresses developed in the fiber were slightly relaxed or retained.

Download to read the full article text

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. J. Shah, “Effects of environmental nuclear radiation on optical fibers,” Bell System Technical Journal, 1975, 54(7): 1207–1213.

    Google Scholar 

  2. E. J. Friebele, C. G. Askins, M. E. Gingerich, and K. J. Long, “Optical fiber waveguides in radiation environments, II,” Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions With Materials and Atoms, 1984, 1(2–3): 355–369.

    Google Scholar 

  3. S. Girard, J. Kuhnhenn, A. Gusarov, B. Brichard, M. Van Uffelen, Y. Ouerdane, et al., “Radiation effects on silica-based optical fibers: recent advances and future challenges,” IEEE Transactions on Nuclear Science, 2013, 60(3): 2015–2036.

    ADS  Google Scholar 

  4. H. Henschel, O. Köhn, H. U. Schmidt, E. Bawirzanski, and A. Landers, “Optical fibres for high radiation dose environments,” IEEE Transactions on Nuclear Science, 1994, 41(3): 510–516.

    ADS  Google Scholar 

  5. A. Iino and J. Tamura, “Radiation resistivity in silica optical fibers,” Journal of Lightwave Technology, 1998, 6(2): 145–149.

    Google Scholar 

  6. T. Shikama, T. Kakuta, M. Narui, T. Sagawa, N. Shamoto, T. Uramoto, et al., “Behavior of radiation-resistant optical fibers under irradiation in a fission reactor,” Journal of Nuclear Materials, 1994, 212–215(1): 421–425.

    ADS  Google Scholar 

  7. A. Honda, K. Toh, S. Nagata, B. Tsuchiya, and T. Shikama, “Effect of temperature and irradiation on fused silica optical fiber for temperature measurement,” Journal of Nuclear Materials, 2007, 1367–370(B): 1117–1121.

    ADS  Google Scholar 

  8. T. Kakuta, T. Shikama, M. Narui, and T. Sagawa, “Behavior of optical fibers under heavy irradiation,” Fusion Engineering and Design, 1998, 41(1–4): 201–205.

    Google Scholar 

  9. M. Shan, H. Wang, Z. Xu, N. Li, C. Chen, J. Shi, et al., “Synergetic improvement of mechanical properties and surface activities in γ-irradiation carbon fibers revealed by radial positioning spectroscopy and mechanical model,” Analytical Methods, 2018, 10(5): 496–503.

    Google Scholar 

  10. K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” Journal of Lightwave Technology, 1997, 15(8): 1263–1276.

    ADS  Google Scholar 

  11. S. J. Mihailov, “Fiber Bragg grating sensors for harsh environments,” Sensors, 2012, 12(2): 1898–1918.

    Google Scholar 

  12. A. I. Gusarov, F. Berghmans, A. F. Fernandez, O. Deparis, Y. Defosse, D. Starodubov, et al., “Behavior of fibre Bragg gratings under high total dose gamma radiation,” IEEE Transactions on Nuclear Science, 2000, 47(3): 688–692.

    ADS  Google Scholar 

  13. A. F. Fernandez, B. Brichard, F. Berghmans, and M. Decréton, “Dose-rate dependencies in gamma-irradiated fiber Bragg grating filters,” IEEE Transactions on Nuclear Science, 2002, 49(6): 2874–2878.

    ADS  Google Scholar 

  14. A. Gusarov, D. Kinet, C. Caucheteur, M. Wuilpart, and P. Mégret, “Gamma radiation induced short-wavelength shift of the Bragg peak in type I fiber gratings,” IEEE Transactions on Nuclear Science, 2010, 57(6): 3775–3778.

    ADS  Google Scholar 

  15. A. Gusarov, S. Vasiliev, O. Medvedkov, I. Mckenzie, and F. Berghmans, “Stabilization of fiber Bragg gratings against gamma radiation,” in Proceeding of 2007 9th European Conference on Radiation and Its Effects on Components and Systems, Deauville, France, 2007.

  16. K. Fujita, A. Kimura, M. Nakazawa, and H. Takahashi, “Bragg peak shifts of fiber Bragg gratings in radiation environment,” in Proceedings of SPIE 4204, Fiber Optic Sensor Technology II, Boston, MA, USA, 2000, pp: 184–191.

  17. D. Grobnic, H. Henschel, S. K. Hoeffgen, J. Kuhnhenn, S. J. Mihailov, and U. Weinand, “Radiation sensitivity of Bragg gratings written with femtosecond IR lasers,” in Proceedings of SPIE 7316, Fiber Optic Sensors and Applications VI, Orlando, Florida, USA, 2009, pp: 73160C-1–73160C-9.

  18. S. K. Hoeffgen, H. Henschel, J. Kuhnhenn, U. Weinand, C. Caucheteur, D. Grobnic, et al., “Comparison of the radiation sensitivity of fiber Bragg gratings made by four different manufacturers,” IEEE Transactions on Nuclear Science, 2011, 58(3): 906–909.

    ADS  Google Scholar 

  19. H. Henschel, S. K. Hoeffgen, J. Kuhnhenn, and U. Weinand, “Influence of manufacturing parameters and temperature on the radiation sensitivity of fiber Bragg gratings,” IEEE Transactions on Nuclear Science, 2010, 57(4): 2029–2034.

    ADS  Google Scholar 

  20. H. Henschel, D. Grobnic, S. K. Hoeffgen, J. Kuhnhenn, S. J. Mihailov, and U. Weinand, “Development of highly radiation resistant fiber Bragg gratings,” IEEE Transactions on Nuclear Science, 2011, 58(4): 2103–2110.

    ADS  Google Scholar 

  21. S. M. Eaton, H. Zhang, P. R. Herman, F. Yoshino, L. Shah, J. Bovatsek, et al., “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Optics Express, 2005, 13(12): 4708–4716.

    ADS  Google Scholar 

  22. B. D. Evans, “The role of hydrogen as a radiation protection agent at low temperature in a low-OH, pure silica optical fiber,” IEEE Transactions on Nuclear Science, 1988, 35(6): 1215–1220.

    ADS  Google Scholar 

  23. D. Sporea, A. Sporea, and C. Oproiu, “Effects of hydrogen loading on optical attenuation of gamma-irradiated UV fibers,” Journal of Nuclear Materials, 2012, 423(1–3): 142–148.

    ADS  Google Scholar 

  24. A. Alessi, S. Girard, M. Cannas, S. Agnello, A. Boukenter, and Y. Ouerdane, “Influence of drawing conditions on the properties and radiation sensitivities of pure-silica-core optical fibers,” Journal of Lightwave Technology, 2012, 30(11): 1726–1732.

    ADS  Google Scholar 

  25. A. L. Tomashuk and M. O. Zabezhailov, “Formation mechanisms of precursors of radiation-induced color centers during fabrication of silica optical fiber preform,” Journal of Applied Physics, 2011, 109(8): 083103–1–083103–11.

    ADS  Google Scholar 

  26. K. Nagasawa, Y. Hoshi, Y. Ohki, and K. Yahagi, “Improvement of radiation resistance of pure silica core fibers by hydrogen treatment,” Japanese Journal of Applied Physics, 1985, 24(9): 1224–1228.

    ADS  Google Scholar 

  27. G. H. Sigel Jr., E. J. Friebele, and M. E. Gingerich, “Recent progress in the investigation of radiation resistant optical fibers,” in Proceedings of SPIE 0296, Fiber Optics in Adverse Environments I, 25th Annual Technical Symposium, San Diego, USA, Jan. 1–8, 1982.

  28. K. Sanada, T. Shamoto, and K. Inada, “Radiation resistance characteristics of graded-index fibers with a core of Ge-, F-doped or B and F-codoped SiO2 glass,” Journal of Non-Crystalline Solids, 1995, 189(3): 283–290.

    ADS  Google Scholar 

  29. P. R. Watekar, S. Ju, and W. T. Han, “Design and development of a trenched optical fiber with ultra-low bending loss,” Optics Express, 2009, 17(12): 10350–10363.

    ADS  Google Scholar 

  30. B. Brichard, O. V. Butov, K. M. Golant, and A. F. Fernandez, “Gamma radiation-induced refractive index change in Ge- and N-doped silica,” Journal of Applied Physics, 2008, 103(5): 054905–1–054905–4.

    ADS  Google Scholar 

  31. K. Sanada, N. Shamoto, and K. Inada, “Radiation resistance of fluorine-doped silica-core fibers,” Journal of Non-Crystalline Solids, 1994, 179(4): 339–344.

    ADS  Google Scholar 

  32. E. J. Friebele, D. L. Griscom, and G. H. Sigel Jr., “Defect centers in a germanium-doped silica-core optical fiber,” Journal of Applied Physics, 1974, 45(8): 3424–3428.

    ADS  Google Scholar 

  33. S. Ju, Y. Kim, S. Jeong, J. Y. Kim, N. H. Lee, H. K. Jung, et al., “Gamma-ray dose-rate dependence on radiation resistance of specialty optical fiber with inner cladding layers,” Springer Proceedings in Physics, 2016, 177: 51–65.

    Google Scholar 

  34. N. P. Bansal and R. H. Doremus, “Handbook of glass properties,” Orlando, Florida, USA: Academic Press, 1986: 548–551.

    Google Scholar 

  35. J. W. Yu and K. Oh, “New in-line fiber band pass filters using high silica dispersive optical fibers,” Optics Communications, 2002, 204(1–6): 111–118.

    ADS  Google Scholar 

  36. H. Hultzsch, Eds., Optical telecommunication systems. Damm-Verlag KGGelsenkirchen, Germany: Academic Press, 1996.

    Google Scholar 

  37. S. Ju, P. R. Watekar, and W. T. Han, “Enhanced sensitivity of the FBG temperature sensor based on the PbO-GeO2-SiO2 glass optical fiber,” Journal of Lightwave Technology, 2010, 28(18): 2697–2700.

    ADS  Google Scholar 

  38. P. L. Chu and T. Whitbread, “Measurement of stresses in optical fiber and preform,” Applied Optics, 1982, 21(23): 4241–4245.

    ADS  Google Scholar 

  39. Y. Park, S. Choi, U. C. Paek, K. Oh, and D. Y. Kim, “Measurement method for profiling the residual stress of an optical fiber: detailed analysis of off-focusing and beam-deflection effects,” Applied Optics, 2003, 42(7): 1182–1190.

    ADS  Google Scholar 

  40. C. Yin, X. Hanning, G. Weiming, and G. Wenming, “Thermal behavior of GeO2 doped PbO-B2O3-ZnO-Bi2O3 glasses,” Materials Science and Engineering: A, 2006, 423(1–2): 184–188.

    Google Scholar 

  41. J. J. Shyu, C. Y. Lue, and R. D. Jean, “Addition of GeO2 to reduce the viscosity of parent glasses for low-expansion, transparent glass-ceramics containing high-quartz solid solutions,” Journal of the American Ceramic Society, 2006, 89(10): 3235–3239.

    Google Scholar 

  42. M. Kyoto, Y. Chigusa, M. OOE, M. Watanabe, T. Matubara, T. Yamamoto, et al., “Gamma-ray irradiation effect on loss increase of single mode optical fibers, (I) loss increase behavior and kinetic study,” Journal of Nuclear Science and Technology, 1989, 26(5): 507–515.

    Google Scholar 

  43. E. Regnier, I. Flammer, S. Girard, F. Gooijer, F. Achten, and G. Kuyt, “Low-dose radiation-induced attenuation at infrared wavelengths for P-doped, Ge-doped and pure silica-core optical fibres,” IEEE Transactions on Nuclear Science, 2007, 54(4): 1115–1119.

    ADS  Google Scholar 

  44. B. Brichard, O. V. Butov, K. M. Golant, and A. F. Fernandez, “Gamma radiation-induced refractive index change in Ge- and N-doped silica,” Journal of Applied Physics, 2008, 103(5): 054905–1–4.

    ADS  Google Scholar 

  45. B. H. Kim, T. J. Ahn, D. Y. Kim, B. H. Lee, Y. Chung, U. C. Paek, et al., “Effect of CO2 laser irradiation on the refractive-index change in optical fibers,” Applied Optics, 2002, 41(19): 3809–3815.

    ADS  Google Scholar 

  46. B. H. Kim, Y. Park, T. J. Ahn, D. Y. Kim, B. H. Lee, Y. Chung, et al., “Residual stress relaxation in the core of optical fiber by CO2 laser irradiation,” Optics Letters, 2001, 26(21): 1657–1659.

    ADS  Google Scholar 

  47. C. S. Kim, Y. Han, B. H. Lee, W. T. Han, U. C. Paek, and Y. Chung, “Induction of the refractive index change in B-doped optical fibers through relaxation of the mechanical stress,” Optics Communications, 2000, 185(4–6): 337–342.

    ADS  Google Scholar 

  48. B. H. Kim, Y. Park, D. Y. Kim, U. C. Paek, and W. T. Han, “Observation and analysis of residual stress development resulting from OH impurity in optical fibers,” Optics Letter, 2002, 27(10): 806–808.

    ADS  Google Scholar 

  49. F. H. El Batal, “Gamma ray interaction with bismuth silicate glasses,” Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions With Materials and Atoms, 2007, 254(2): 243–253.

    Google Scholar 

  50. Y. Kim, S. Ju, S. Jeong, S. H. Lee, and W. T. Han, “Gamma-ray radiation response at 1550 nm of fluorine-doped radiation hard single-mode optical fiber,” Optics Express, 2016, 24(4): 3910–3920.

    ADS  Google Scholar 

  51. G. Origlio, A. Boukenter, S. Girard, N. Richard, M. Cannas, R. Boscaino, et al., “Irradiation induced defects in fluorine doped silica,” Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions With Materials and Atoms, 2008, 266(12–13): 2918–2922.

    Google Scholar 

  52. K. Kajihara, M. Hirano, L. Skuja, and H. Hosono, “60Co γ-ray-induced intrinsic defect processes in fluorine-doped synthetic SiO2 glasses of different fluorine concentrations,” Materials Science and Engineering: B, 2009, 161(1–3): 96–99.

    Google Scholar 

  53. J. H. Jang, J. Koo, and B. S. Bae, “Photosensitivity of germanium oxide and germanosilicate glass sol-gel films,” Journal of Non-Crystalline Solids, 1999, 259(1–3): 144–148.

    ADS  Google Scholar 

  54. J. E. Shelby, “Effect of radiation on the physical properties of borosilicate glasses,” Journal of Applied Physics, 1980, 51(5): 2561–2565.

    ADS  Google Scholar 

  55. A. Morana, S. Girard, E. Marin, C. Marcandella, J. Périsse, J. R. Macé, et al., “Radiation hardening of FBG in harsh environments,” in Proceedings of SPIE 9157, 23rd International Conference on Optical Fiber Sensors, Santander, Spain, Jun., 2014, pp: 91578I-1–91578I-4.

  56. G. H. Sigel Jr., E. J. Friebele, and M. E. Gingerich, “Recent progress in the investigation of radiation resistant optical fibers,” in Proceedings of SPIE 0296, Conference on Fiber Optics in Adverse Environments I, 25th Annual Technical Symposium, San Diego, CA, USA, Jan. 1–8, 1982.

  57. S. Girard, J. Keurinck, Y. Ouerdane, J. P. Meunier, and A. Boukenter, “Gamma-rays and pulsed X-ray radiation responses of germanosilicate single-mode optical fibers: Influence of cladding codopants,” Journal of Lightwave Technology, 2004, 22(8): 1915–1922.

    ADS  Google Scholar 

  58. J. E. Golob, P. B. Lyons, and L. D. Looney, “Transient radiation effects in low-loss optical waveguides,” IEEE Transactions on Nuclear Science, 1977, NS-24(6): 2164–2168.

    ADS  Google Scholar 

  59. S. Ju, P. R. Watekar, Y. T. Ryu, Y. Lee, S. G. Kang, Y. Kim, et al., “Fabrication and gamma-ray irradiation effect on optical and mechanical properties of germano-silicate glass fibers with inner cladding of B and F doped silica glasses,” Fiber and Integrated Optics, 2019, 38(4): 191–207.

    ADS  Google Scholar 

  60. F. Liu, Y. An, P. Wang, B. Shao, and S. Chen, “Effects of radiation on optical fibers,” Recent Progress in Optical Fiber Research, M. Yasin, Eds., InTech, Shanghai, China: Academic Press, 2012: 431–450.

    Google Scholar 

Download references

Acknowledgment

We thank the Advanced Technology Radiation Laboratory of the Korea Atomic Energy Research Institute for their assistance with γ-ray irradiation measurements. This work was partially supported by the Korea Electric Power Corporation Research Institute (Grant No. KEPRI-16-23) and the Korea Industrial Complex Corporation Industrial Cluster Competitiveness Enhancement Project (Grant No. RGJ18014), South Korea.

Author information

Authors and Affiliations

  1. School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, South Korea

    Seongmin Ju & Won-Taek Han

  2. Smart Photonics Research Center/Advanced Optical Lens Research Center/Laser Research Center, Korea Photonics Technology Institute, Gwangju, 61007, South Korea

    Youngwoong Kim, Kadathala Linganna & Yune Hyoun Kim

Authors
  1. Seongmin Ju
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Youngwoong Kim
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Kadathala Linganna
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Yune Hyoun Kim
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Won-Taek Han
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Won-Taek Han.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ju, S., Kim, Y., Linganna, K. et al. Effect of Temperature and Gamma-Ray Irradiation on Optical Characteristics of Fiber Bragg Grating Inscribed Radiation-Resistant Optical Fiber. Photonic Sens 10, 16–33 (2020). https://doi.org/10.1007/s13320-019-0567-4

Download citation

  • Received: 13 January 2019

  • Revised: 09 July 2019

  • Published: 24 October 2019

  • Issue Date: March 2020

  • DOI: https://doi.org/10.1007/s13320-019-0567-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Optical fiber
  • radiation resistance
  • temperature sensor
  • fiber Bragg grating
  • radiation-induced attenuation
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature