Advertisement

Low-Cost and Highly Sensitive Liquid Refractive Index Sensor Based on Polymer Horizontal Slot Waveguide

  • 297 Accesses

Abstract

We analyze and explore the potential of using a polymer horizontal slot waveguide as light-analyte interactive region to implement a low-cost and highly sensitive liquid refractive index sensor. Numerical analysis shows that the optimized polymer horizontal slot waveguide is able to realize high waveguide sensitivity. With the optimized horizontal slot waveguide, polymer liquid refractive index sensors based on Mach-Zehnder interferometer (MZI) and microring resonator (MRR) are then investigated numerically, and the results show that the MZI-based sensor can achieve high sensitivity of 17024nm/RIU and low limit of detection (LOD) of 1.76×10−6 RIU while the MRR-based sensor can achieve the sensitivity of 177nm/RIU and the LOD of 1.69×10−4 RIU with a very small footprint. Compared with the sensors employing conventional silicon or silicon nitride vertical slot waveguide, the sensors employing polymer horizontal slot waveguide exhibit comparable performances but simpler and lower fabrication costs.

References

  1. [1]

    V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Optics Letters, 2004, 29(11): 1209–1211.

  2. [2]

    Q. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, “Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material,” Optics Letters, 2004, 29(14): 1626–1628.

  3. [3]

    C. A. Barrios, “Optical slot-waveguide based biochemical sensors,” Sensors, 2009, 9(6): 4751–4765

  4. [4]

    C. A. Barrios, K. B. Gylfason, B. Sanchez, A. Griol, H. Sohlström, M. Holgado, et al., “Slot-waveguide biochemical sensor,” Optics Letters, 2007, 32(21): 3080–3082.

  5. [5]

    T. Claes, J. G. Molera, K. D. Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator,” IEEE Photonics Journal, 2009, 1(3): 197–204.

  6. [6]

    Q. Liu, X. Tu, K. W. Kim, J. S. Kee, Y. Shin, K. Han, et al., “Highly sensitive Mach-Zehnder interferometer biosensor based on silicon nitride slot waveguide,” Sensors and Actuators B: Chemical, 2013, 188(11): 681–688.

  7. [7]

    M. Hiltunen, J. Hiltunen, P. Stenberg, S. Aikio, L. Kurki, K. Vahimaa, et al., “Polymeric slot waveguide interferometer for sensor applications,” Optics Express, 2014, 22(6): 7229–7237.

  8. [8]

    X. Wang, S. Grist, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Silicon photonic slot waveguide Bragg gratings and resonators,” Optics Express, 2013, 21(16): 19029–19039.

  9. [9]

    V. M. Passaro, F. Dell’Olio, C. Ciminelli, C. Ciminelli, and M. N. Armenise, “Efficient chemical sensing by coupled slot SOI waveguides,” Sensors, 2009, 9(2): 1012–1032.

  10. [10]

    C. A. Barrios, B. Sanchez, K. B. Gylfason, A. Griol, H. Sohlström, M. Holgado, et al., “Demonstration of slot-waveguide structures on silicon nitride / silicon oxide platform,” Optics Express, 2007, 15(11): 6846–6856.

  11. [11]

    A. Spott, T. Baehrjones, R. Ding, Y. Liu, R. Bojko, T. O’Malley, et al., “Photolithographically fabricated low-loss asymmetric silicon slot waveguides,” Optics Express, 2011, 19(11): 10950–10958.

  12. [12]

    F. Dell’Olio and V. M. N. Passaro, “Optical sensing by optimized silicon slot waveguides,” Optics Express, 2007, 15(8): 4977–4993.

  13. [13]

    C. Viphavakit, M. Komodromos, C. Themistos, W. S. Mohammed, K. Kalli, and B. M. A. Rahman, “Optimization of a horizontal slot waveguide biosensor to detect DNA hybridization,” Applied Optics, 2015, 54(15): 4881–4888.

  14. [14]

    S. Lee, S. C. Eom, J. S. Chang, C. Huh, G. Y. Sung, and J. H. Shin, “Label-free optical biosensing using a horizontal air-slot SiNx microdisk resonator,” Optics Express, 2010, 18(20): 20638–20644.

  15. [15]

    P. T. Lin, S. Kwok, H. Y. G. Lin, V. Singh, L. C. Kimerling, G. M. Whitesides, et al., “Mid-infrared opto-nanofluidic slot-waveguide for label-free on-chip chemical sensing,” Nano Letters, 2014, 14(1): 231–238.

  16. [16]

    B. Kumaria, R. K. Varshneya, and B. P. Pal, “Design of chip scale silicon rib slot waveguide for sub-ppm detection of N2O gas at mid-ir band,” Sensors and Actuators B: Chemical, 2018, 255: 3409–3416.

  17. [17]

    L. Wang, J. Ren, X. Han, T. Claes, X. Jian, P. Bienstman, et al., “A label-free optical biosensor built on a low-cost polymer platform,” IEEE Photonics Journal, 2012, 4(3): 920–930.

  18. [18]

    C. Y. Chao, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12(1): 134–142.

  19. [19]

    J. Halldorsson, N. B. Arnfinnsdottir, A. B. Jonsdottir, B. Agnarsson, and K. Leosson, “High index contrast polymer waveguide platform for integrated biophotonics,” Optics Express, 2010, 18(15): 16217–16226

  20. [20]

    J. Chovan and F. Uherek, “Polymeric slot waveguide for photonics sensing,” in 20th Slovak-Czech-Polish Optical Conference on Wave and Quantum Aspects of Contemporary Optics, Jasna, Slovakia, 2016, 10142, pp. 101420P–1–101420P–7.

  21. [21]

    G. M. Hale and M. R. Querry, “Optical constants of water in the 200-nm to 200-µm wavelength region,” Applied Optics, 1973, 12(3): 555–563.

  22. [22]

    A. F. Fucaloro, Y. Pu, K. Cha, A. Williams, and K. Conrad, “Partial molar volumes and refractions of aqueous solutions of fructose, glucose, mannose, and sucrose at 15.00, 20.00, and 25.00°C,” Journal of Solution Chemistry, 2007, 36(1): 61–80.

  23. [23]

    X. Sun, D. Dai, L. Thylén, and L. Wosinski, “High-sensitivity liquid refractive-index sensor based on a Mach-Zehnder interferometer with a double-slot hybrid plasmonic waveguide,” Optics Express, 2015, 23(20): 25688–25699.

  24. [24]

    S. Chandran, K. Ramesh, and B. K. Das, “Dispersion enhanced critically coupled ring resonator for wide range refractive index sensing,” IEEE Journal of Selected Topics in Quantum Electronics, 2016, 23(2): 424–432.

  25. [25]

    W. Zhang, S. Serna, X. L. Roux, L. Vivien, and E. Cassan, “Highly sensitive refractive index sensing by fast detuning the critical coupling condition of slot waveguide ring resonators,” Optics Letters, 2016, 41(3): 532–535.

Download references

Acknowledgment

This work is supported by the National Natural Science Foundation of China (NSFC) (Grant No. 61505020) and the Opened Fund of the State Key Laboratory of Integrated Optoelectronics (Grant No. IOSKL2018KF12).

Author information

Correspondence to Xiaoxia Ma.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Chen, K., Wu, J. et al. Low-Cost and Highly Sensitive Liquid Refractive Index Sensor Based on Polymer Horizontal Slot Waveguide. Photonic Sens 10, 7–15 (2020) doi:10.1007/s13320-019-0560-y

Download citation

Keywords

  • Integrated optics devices
  • polymer waveguides
  • sensors
  • waveguides