Broadband Acoustic Vibration Sensor Based on Cladding-Mode Resonance of Double-Cladding Fiber

Abstract

We have proposed and demonstrated a double-cladding fiber (DCF) with cladding-mode resonance property for broadband acoustic vibration sensing. Since the fundamental mode in the core waveguide is able to be coupled to LP05 mode in the tube waveguide once the phase-matching condition is fulfilled, the transmission spectrum can exhibit a dip with a large extinction ratio. An acoustic vibration could induce the wavelength shift of such transmission spectrum, so that the intensity variation at a wavelength near the dip is coded with the information of the acoustic vibration signal. By demodulating the response of intensity variation, the frequency of the applied acoustic vibration signal can be recovered. Such a DCF-based sensor with an intensity modulation could measure the acoustic vibration with a broadband frequency range from 1 Hz to 400 kHz and exhibits the maximum signal-to-noise ratio (SNR) of ~80.79 dB when the vibration frequency is 20 kHz. The obtained results show that the proposed DCF-based acoustic vibration sensor has a potential application in environmental assessment, structural damage detection, and health monitoring.

References

  1. [1]

    Y. Ishihara, M. Kanao, M. Yamamoto, T. Shigeru, M. Takeshi, and M. Takahiko, “Infrasound observations at syowa station, east antarctica: Implications for detecting the surface environmental variations in the polar regions,” Geoscience Frontiers, 2015, 6(2): 285–296.

    Article  Google Scholar 

  2. [2]

    V. Arora, Y. H. Wijnant, and A. de Boer, “Acoustic-based damage detection method,” Applied Acoustics, 2014, 80: 23–27.

    Article  Google Scholar 

  3. [3]

    R. Mazlan, J. Kei, L. Hickson, J. Gavranich, and R. Linning, “Test-retest reproducibility of the 1000Hz tympanometry test in newborn and six-week-old healthy infants,” International Journal of Audiology, 2010, 49(11): 815–822.

    Article  Google Scholar 

  4. [4]

    G. Wild and S. Hinckley, “Acousto-ultrasonic optical fiber sensors: overview and state-of-the-art,” IEEE Sensors Journal, 2008, 8(7): 1184–1193.

    ADS  Google Scholar 

  5. [5]

    J. G. V. Teixeira, I. T. Leite, S. Silva, and O. Frazão, “Advanced fiber-optic acoustic sensors,” Photonic Sensors, 2014, 4(3): 198–208.

    ADS  Article  Google Scholar 

  6. [6]

    L. Liu, P. Lu, H. Liao, S. Wang, W. Yang, D. Lfuniu, et al., “Fiber-optic michelson interferometric acoustic sensor based on a PP/PET diaphragm,” IEEE Sensors Journal, 2016, 16(9): 3054–3058.

    ADS  Article  Google Scholar 

  7. [7]

    C. Sun, “Multiplexing of fiber-optic acoustic sensors in a Michelson interferometer configuration,” Optics Letters, 2003, 28(12): 1001–1003.

    ADS  Article  Google Scholar 

  8. [8]

    T. Zhang, F. Pang, H. Liu, J. Cheng, L. Lv, X. Zhang, et al., “A fiber-optic sensor for acoustic emission detection in a high voltage cable system,” Sensors, 2016, 16(12): 2026–2036.

    Article  Google Scholar 

  9. [9]

    Q. Sun, D. Liu, J. Wang, and H. Liu, “Distributed fiber-optic vibration sensor using a ring Mach-Zehnder interferometer,” Optics Communications, 2008, 281(6): 1538–1544.

    ADS  Article  Google Scholar 

  10. [10]

    J. F. Dorighi, S. Krishnaswamy, and J. D. Achenbach, “Stabilization of an embedded fiber optic Fabry-Perot sensor for ultrasound detection,” IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 1995, 42(5): 820–824.

    Article  Google Scholar 

  11. [11]

    K. Wada, H. Narui, D. Yamamoto, T. Matsuyama, and H. Horinaka, “Balanced polarization maintaining fiber Sagnac interferometer vibration sensor,” Optics Express, 2011, 19(22): 21467–21474.

    ADS  Article  Google Scholar 

  12. [12]

    L. Wang, N. Fang, C. Wu, H. Qin, and Z. Huang, “A fiber optic PD sensor using a balanced Sagnac interferometer and an EDFA-Based DOP Tunable fiber ring laser,” Sensors, 2014, 14(5): 8398–8422.

    Article  Google Scholar 

  13. [13]

    S. Campopiano, A. Cutolo, A. Cusano, M. Giordano, G. Parente, G. Lanza, et al., “Underwater acoustic sensors based on fiber Bragg gratings,” Sensors, 2009, 9(6): 4446–4454.

    Article  Google Scholar 

  14. [14]

    N. Takahashi, K. Yoshimura, S. Takahashi, and K. Imamura, “Development of an optical fiber hydrophone with fiber Bragg grating,” Ultrasonics, 2000, 38: 581–585.

    Article  Google Scholar 

  15. [15]

    A. V. Harisha, B. Varghesea, B. Raob, K. Balasubramaniamc, and B. Srinivasan, “Dynamic interrogator for elastic wave sensing using Fabry Perot filters based on fiber Bragg gratings,” Ultrasonics, 2015, 22: 103–108.

    Article  Google Scholar 

  16. [16]

    S. Wang, P. Lu, L. Zhang, D. Liu, and J. Zhang, “Intensity demodulation-based acoustic sensor using dual fiber Bragg gratings and a titanium film,” Journal of Modern Optics, 2014, 61(12): 1033–1038.

    ADS  Article  Google Scholar 

  17. [17]

    J. O. Gaudron, F. Surre, T. Sun, and K. T. V. Grattan, “LPG-based optical fibre sensor for acoustic wave detection,” Sensors and Actuators A: Physical, 2012, 173(1): 97–101.

    Article  Google Scholar 

  18. [18]

    D. Pawar, C. N. Rao, R. K. Choubey, and S. N. Kale, “Mach-Zehnder interferometric photonic crystal fiber for low acoustic frequency detections,” Applied Physics Letters, 2016, 108(4): 041912.

    ADS  Article  Google Scholar 

  19. [19]

    A. Sun, Z. Wu, C. Wan, and C. Yang, “All-fiber optic acoustic sensor based on multimode-single mode-multimode structure,” Optik, 2012, 123(13): 1138–1139.

    ADS  Article  Google Scholar 

  20. [20]

    C. S. Fernandes, M. T. M. R. Giraldi, M. J. Souza, J. C. W. A. Costa, C. Golveia, P. Jorge, et al., “Curvature and vibration sensing based on core diameter mismatch structures,” IEEE Transactions on Instrumentation and Measurement, 2016, 65(9): 2120–2128.

    Article  Google Scholar 

  21. [21]

    Y. Ran, L. Xia, Y. Han, W. Li, J. Rohollahnejad, Y. Wen, et al., “Vibration fiber sensors based on SM-NC-SM fiber structure,” IEEE Photonics Journal, 2015, 7(2): 1–7.

    Article  Google Scholar 

  22. [22]

    Y. Xu, P. Lu, Z. Qin, J. Harris, F. Baset, V. Bhardwaj, et al., “Vibration sensing using a tapered bend-insensitive fiber based Mach-Zehnder interferometer,” Optics Express, 2013, 21(3): 3031–3042.

    ADS  Article  Google Scholar 

  23. [23]

    Y. Li, X. Wang, and X. Bao, “Sensitive acoustic vibration sensor using single-mode fiber tapers,” Applied Optics, 2011, 50: 1873–1878.

    ADS  Article  Google Scholar 

  24. [24]

    I. R. Matłas, M. L. Amo, F. Montero, C. F. Valdivielso, F. J. Arregui, and C. Bariin, “Low-cost optical amplitude modulator based on a tapered single-mode optical fiber,” Applied Optics, 2001, 42(2): 228–234.

    ADS  Google Scholar 

  25. [25]

    W. Ni, P. Lu, X. Fu, S. Wang, Y. Sun, D. Liu, et al., “Highly sensitive optical fiber curvature and acoustic sensor based on thin core ultralong period fiber grating,” IEEE Photonics Journal, 2017, 9(2): 43–45.

    Google Scholar 

  26. [26]

    F. Pang, W. Xiang, H. Guo, N. Chen, X. Zeng, Z. Chen, et al., “Special optical fiber for temperature sensing based on cladding-mode resonance,” Optics Express, 2008, 16(17): 12967–16972.

    ADS  Article  Google Scholar 

  27. [27]

    J. Zhang, F. Pang, H. Guo, Z. Chen, and T. Wang, “A strain sensor based on cladding mode resonance of double-cladding fiber,” Proceedings of SPIE − The International Society for Optical Engineering, 2010, 7853: 78533U.

    ADS  Google Scholar 

  28. [28]

    S. Wang, P. Lu, L. Zhang, D. Liu, and J. Zhang, “Optical fiber acoustic sensor based on nonstandard fused coupler and aluminum foil,” IEEE Sensors Journal, 2014, 14(7): 2293–2298.

    ADS  Google Scholar 

  29. [29]

    B. Xu, Y. Li, M. Sun, Z. Zhang, X. Dong, Z. Zhang, et al., “Acoustic vibration sensor based on nonadiabatic tapered fibers,” Optics Letters, 2012, 37(22): 4768–4770.

    ADS  Article  Google Scholar 

  30. [30]

    P. Lu, Y. Xu, F. Baset, X. Bao, and R. Bhardwaj, “In-line fiber microcantilever vibration sensor,” Applied Physics Letters, 2013, 103(21): 211113-1–211113-5.

    ADS  Article  Google Scholar 

  31. [31]

    J. Villatoro, E. Antonio-lopez, J. Zubia, A. Schulzgen, and R. Amezcua-Correa, “Interferometer based on strongly coupled multi-core optical fiber for accurate vibration sensing,” Optics Express, 2017, 25(21): 25734–25740.

    ADS  Article  Google Scholar 

  32. [32]

    Y. Li, X, Wang, and X. Bao, “Sensitive acoustic vibration sensor using single-mode fiber tapers,” Applied Optics, 2011, 50(13): 1873–1878.

    ADS  Article  Google Scholar 

  33. [33]

    T. Zhang, F. Pang, H. Liu, J. Cheng, L. Lv, X. Zhang, et al., “A fiber-optic sensor for acoustic emission detection in a high voltage cable system,” Sensors, 2016, 16(12): 2026–2036.

    Article  Google Scholar 

Download references

Acknowledgement

This project was funded by the National Key Research and Development Program of China (Grant No. 2016YFF0100600) and the National Natural Science Foundation of China (Grant Nos. 61735009 and 61635006).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Fufei Pang.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sui, G., Liu, H., Pang, F. et al. Broadband Acoustic Vibration Sensor Based on Cladding-Mode Resonance of Double-Cladding Fiber. Photonic Sens 9, 230–238 (2019). https://doi.org/10.1007/s13320-019-0548-7

Download citation

Keywords

  • Double-cladding fiber
  • acoustic vibration sensor
  • coaxial coupler