Advertisement

Photonic Sensors

, Volume 9, Issue 2, pp 151–161 | Cite as

Dual-Core Photonic Crystal Fiber Plasmonic Refractive Index Sensor: A Numerical Analysis

  • Alok Kumar PaulEmail author
  • Ajay Krishno Sarkar
  • Abdul Khaleque
Open Access
Regular

Abstract

A numerical analysis on dual core photonic crystal fiber (DC-PCF) based surface plasmon resonance (SPR) refractive index sensor is presented. The guiding parameters and required sensing performances are examined with finite element method (FEM) based software under MATLAB environment. According to simulation, it is warrant that the proposed refractive index sensor offers the maximum amplitude sensitivity of 554.9 refractive index unit (RIU−1) and 636.5 RIU−1 with the maximum wavelength sensitivity of 5800 nm/RIU and 11 500 nm/RIU, and the sensor resolution of 1.72 × 10−5 RIU and 8.7 × 10−6 RIU, at analyte refractive index (RI) of 1.40 for x- and y-polarized modes, respectively. As the sensing performance in different wavelength ranges is quite high, the proposed sensor can be used in simultaneous detection for different wavelength ranges. Therefore, the proposed device is of a suitable platform for detecting biological, chemical, biochemical, and organic chemical analytes.

Keywords

Photonic crystal fiber biosensor refractive index sensor finite element method plasmonic material 

Notes

Acknowledgement

The authors thank Dr. Abdul Khaleque for his valuable discussions and contributions for preparing the manuscript.

References

  1. [1]
    M. Y. Azab, M. F. O. Hameed, A. Heikal, M. A. Swillam, and S. Obayya, “Analysis of highly sensitive surface plasmon photonic crystal fiber biosensor,” SPIE, 2018, 10541: 105411N-1‒105411N-6.Google Scholar
  2. [2]
    F. Wang, Z. Sun, C. Liu, T. Sun, and P. K. Chu, “A high-sensitivity photonic crystal fiber (PCF) based on the surface plasmon resonance (SPR) biosensor for detection of density alteration in non-physiological cells (DANCE),” Opto-Electronics Review, 2018, 26(1): 50–56.CrossRefGoogle Scholar
  3. [3]
    T. A. Birks, J. C. Knight, and P. S. J. Russell, “Endlessly single-mode photonic crystal fiber,” Optics Letters, 1997, 22(13): 961–963.ADSCrossRefGoogle Scholar
  4. [4]
    S. M. A. Razzak, Y. Namihira, M. A. Hossain, and A. Khaleque, “Designing birefringence of index-guiding non-hexagonal photonic crystal fibers,” Journal of Optics, 2011, 40(2): 56–64.CrossRefGoogle Scholar
  5. [5]
    A. Khaleque and H. T. Hattori, “Polarizer based upon a plasmonic resonant thin layer on a squeezed photonic crystal fiber,” Applied Optics, 2015, 54(9): 2543–2549.ADSCrossRefGoogle Scholar
  6. [6]
    J. Knight, J. Arriaga, T. Birks, A. O. Blanch, W. Wadsworth, and P. S. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photonics Technology Letters, 2000, 12(7): 807–809.ADSCrossRefGoogle Scholar
  7. [7]
    W. J. Wadsworth, N. Joly, J. C. Knight, T. A. Birks, F. Biancalana, and P. S. J. Russell, “Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres,” Optics Express, 2004, 12(2): 299–309.ADSCrossRefGoogle Scholar
  8. [8]
    C. Liu, W. Q. Su, Q. Liu, X. L. Lu, F. M. Wang, T. Sun, et al., “Symmetrical dual D-shape photonic crystal fibers for surface plasmon resonance sensing,” Optics Express, 2018, 26(7): 9039–9049.ADSCrossRefGoogle Scholar
  9. [9]
    C. Liu, L. Yang, Q. Liu, F. M. Wang, Z. J. Sun, T. Sun, et al., “Analysis of a surface plasmon resonance probe based on photonic crystal fibers for low refractive index detection,” Plasmonics, 2018, 13(3): 779–784.CrossRefGoogle Scholar
  10. [10]
    T. S. Wu, Y. Shao, Y. Wang, S. Q. Cao, W. P. Cao, F. Zhang, et al., “Surface plasmon resonance biosensor based on gold-coated side-polished hexagonal structure photonic crystal fiber,” Optics Express, 2017, 25(17): 20313–20322.ADSCrossRefGoogle Scholar
  11. [11]
    C. Liu, L. Yang, W. Q. Su, F. M. Wang, T. Sun, Q. Liu, et al., “Numerical analysis of a photonic crystal fiber based on a surface plasmon resonance sensor with an annular analyte channel,” Optics Communications, 2017, 382: 162–166.ADSCrossRefGoogle Scholar
  12. [12]
    S. Chakma, M. A. Khalek, B. K. Paul, K. Ahmed, M. R. Hasan, and A. N. Bahar, “Gold-coated photonic crystal fiber biosensor based on surface plasmon resonance: design and analysis,” Sensing and Bio-Sensing Research, 2018, 18: 7–12.CrossRefGoogle Scholar
  13. [13]
    A. Khaleque and H. T. Hattori, “Ultra-broadband and compact polarization splitter based on gold filled dual-core photonic crystal fiber,” Journal of Applied Physics, 2015, 118(14): 682–683.CrossRefGoogle Scholar
  14. [14]
    W. Zhang, S. Q. Lou, and X. Wang, “A polarization filter based on a novel photonic crystal fiber with a gold-coated air hole by using surface plasmon resonance,” Plasmonics, 2018, 13(2): 365–371.CrossRefGoogle Scholar
  15. [15]
    Y. X. Liu, S. P. Zhan, G. T. Cao, H. Yang, J. Li, Q. Liu, et al., “Theoretical design of plasmonic refractive index sensor based on the fixed band detection,” IEEE Journal of Selected Topics in Quantum Electronics, 2018, 25(2): 1–1.CrossRefGoogle Scholar
  16. [16]
    F. Wang, Z. Sun, C. Liu, T. Sun, and P. K. Chu, “A highly sensitive dual-core photonic crystal fiber based on a surface plasmon resonance biosensor with silver-graphene layer,” Plasmonics, 2017, 12(6): 1847–1853.CrossRefGoogle Scholar
  17. [17]
    A.K. Paul, A. K. Sarkar, M. A. B. S. Rahman, and A. Khaleque, “Twin core photonic crystal fiber plasmonic refractive index sensor,” IEEE Sensors Journal, 2018, 18(14): 5761–5769.ADSCrossRefGoogle Scholar
  18. [18]
    A. K. Paul, A. K. Sarkar, M. H. Islam, and M. Morshed, “Dual core photonic crystal fiber based surface plasmon resonance biosensor,” Optik–International Journal for Light and Electron Optics, 2018, 170: 400–408.CrossRefGoogle Scholar
  19. [19]
    G. W. An, S. G. Li, X. Yan, X. N. Zhang, Z. Y. Yuan, and Y. N. Zhang, “High-sensitivity and tunable refractive index sensor based on dual-core photonic crystal fiber,” Journal of the Optical Society of America B, 2016, 33(7): 1330–1334.CrossRefGoogle Scholar
  20. [20]
    K. Tong, F. C. Wang, M. T. Wang, P. Dang, Y. X. Wang, and J. R. Sun, “D-shaped photonic crystal fiber biosensor based on silver-graphene,” Optik-International Journal for Light and Electron Optics, 2018, 168: 467–474.CrossRefGoogle Scholar
  21. [21]
    A. Bjarklev, J. Broeng, and A. S. Bjarklev, Fabrication of photonic crystal fibres, photonic crystal fibres. Boston, USA: Springer, 2003: 115–130.Google Scholar
  22. [22]
    A. A. Rifat, F. Haider, R. Ahmed, G. A. Mahdiraji, F. R. M. Adikan, and A. E. Miroshnichenko, “Highly sensitive selectively coated photonic crystal fiber-based plasmonic sensor,” Optics Letters, 2018, 43(4): 891–894.ADSCrossRefGoogle Scholar
  23. [23]
    D. J. J. Hu and H. P. J. Hu, “Photonics, recent advances in plasmonic photonic crystal fibers: design, fabrication and applications,” Advances in Optics and Photonics, 2017, 9(2): 257–314.ADSCrossRefGoogle Scholar
  24. [24]
    M. R. Hasan, S. Akter, M. S. Rahman, and K. Ahmed, “Design of a surface plasmon resonance refractive index sensor with high sensitivity,” Optical Engineering, 2017, 56(8): 087101-1‒087101-6.CrossRefGoogle Scholar
  25. [25]
    S. I. Azzam, M. F. O. Hameed, R. E. A. Shehata, A. Heikal, and S. S. A. Obayya, “Multichannel photonic crystal fiber surface plasmon resonance based sensor,” Optical and Quantum Electronics, 2016, 48(2): 1–11.CrossRefGoogle Scholar
  26. [26]
    A. E. Khalil, A. H. E. Saeed, M. A. Ibrahim, M. E. Hashish, M. R. Abdelmonem, M. F. O. Hameed, et al., “Highly sensitive photonic crystal fiber biosensor based on titanium nitride,” Optical and Quantum Electronics, 2018, 50(3): 158-1‒158-12.CrossRefGoogle Scholar
  27. [27]
    M. R. Hasan, S. Akter, A. A. Rifat, S. Rana, K. Ahmed, R. Ahmed, et al., “Spiral photonic crystal fiber-based dual-polarized surface plasmon resonance biosensor,” IEEE Sensors Journal, 2017, 18(1): 133–140.ADSCrossRefGoogle Scholar
  28. [28]
    M. R. Hasan, S. Akter, A. A. Rifat, S. Rana, and S. Ali, “A highly sensitive gold-coated photonic crystal fiber biosensor based on surface plasmon resonance,” Photonics, 2017, 4(1): 1–11.Google Scholar
  29. [29]
    A. K. Paul, A. K. Sarkar, and S. A. Razzak, “Graphene coated photonic crystal fiber biosensor based on surface plasmon resonance,” in Proceeding of 2017 IEEE Region 10 Humanitarian Technology Conference (R10-HTC), Dhaka, Bangladesh, 2017, pp. 856–859.CrossRefGoogle Scholar
  30. [30]
    W. H. Reeves, J. Knight, P. S. J. Russell, and P. Roberts, “Demonstration of ultra-flattened dispersion in photonic crystal fibers,” Optics Express, 2002, 10(14): 609–613.ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://doi.org/creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Alok Kumar Paul
    • 1
    Email author
  • Ajay Krishno Sarkar
    • 1
  • Abdul Khaleque
    • 1
  1. 1.Department of Electrical & Electronic EngineeringRajshahi University of Engineering & TechnologyRajshahiBangladesh

Personalised recommendations