Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Photonic Sensors
  3. Article

Resonant Light Scattering Toward Optical Fiber Humidity Sensors

  • Regular
  • Open Access
  • Published: 06 November 2018
  • volume 9, pages 60–68 (2019)
Download PDF

You have full access to this open access article

Photonic Sensors Aims and scope Submit manuscript
Resonant Light Scattering Toward Optical Fiber Humidity Sensors
Download PDF
  • Mahboubeh Dehghani Sanij1,
  • Abolfazl Bahrampour2 &
  • Ali Reza Bahrampour2 
  • 579 Accesses

  • 2 Citations

  • Explore all metrics

  • Cite this article

Abstract

The deposition of tetrakis (4-sulonatophenyl) porphyrin (TPPS) thin film on optical fibers presents many possibilities for sensing applications. The J-form aggregation with a narrow and sharp spectral feature at about 490 nm and its sensitivity to humidity have been discussed; a fast change of wavelength occurs according with variation in the humidity level. The reproducibility and high sensitivity of TPPS-coated fibers, along with the capabilities of optical fibers, suggest the device as a good candidate for humidity sensing in harsh environments.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. T. L. Yeo, T. Sun, and K. T. V. Grattan, “Fibre-optic sensor technologies for humidity and moisture measurement,” Sensors and Actuators A: Physical, 2008, 144(2): 280–295.

    Article  Google Scholar 

  2. M. Giordano, M. Russo, A. Cusano, A. Cutolo, G. Mensitieri, and L. Nicolais, “Optical sensor based on ultrathin films of δ-form syndiotactic polystyrene for fast and high resolution detection of chloroform,” Applied Physics Letters, 2004, 85(22): 5349–5351.

    Article  ADS  Google Scholar 

  3. A. Cusano, P. Pilla, L. Contessa, A. Iadicicco, S. Campopiano, A. Cutolo, et al., “High-sensitivity optical chemosensor based on coated long-period gratings for sub-ppm chemical detection in water,” Applied Physics Letters, 2005, 87(23): 234105-1–234105-3.

    Article  ADS  Google Scholar 

  4. S. Otsuki, K. Adachi, and T. Taguchi, “A novel fibre-optic gas sensing arrangement based on an air gap setting and an application to optical detection of humidity,” Analytical Sciences, 1998, 14(3): 633–635.

    Article  Google Scholar 

  5. S. J. Glenn, B. M. Cullum, R. B. Nair, D. A. Nivens, C. J. Murphy, and S. M. Angel, “Lifetime-based fiber-optic water sensor using a luminescent complex in a lithium-treated Nafion (TM) membrane,” Analytica Chimica Acta, 2001, 448(1–2): 1–8.

    Google Scholar 

  6. S. Q. Tao, C. B. Winstead, R. Jindal, and J. P. Singh, “Optical-fibre sensor using tailored porous sol-gel fiber core,” IEEE Sensors Journal, 2004, 4(3): 322–328.

    Article  ADS  Google Scholar 

  7. M. Bedoya, M. T. Díez, M. C. M. Bondi, and G. Orellana, “Humidity sensing with a luminescent Ru (II) complex and phase-sensitive detection,” Sensors and Actuators B: Chemical, 2006, 113(2): 573–581.

    Article  Google Scholar 

  8. S. Muto, O. Suzuki, T. Amano, and M. Morisawa, “A plastic optical fiber sensor for real-time humidity monitoring,” Measurement Science and Technology, 2003, 14(6): 746–750.

    Article  ADS  Google Scholar 

  9. F. J. Arregui, Z. Ciaurriz, M. Oneca, and I. R. Matias, “An experimental study about hydrogels for the fabrication of optical fiber humidity sensors,” Sensors and Actuators B: Chemical, 2003, 96(1–2): 165–172.

    Google Scholar 

  10. A. Gastón, F. Pérez, and J. Sevilla, “Optical fiber relative-humidity sensor with polyvinyl alcohol film,” Applied Optics, 2004, 43(21): 4127–4132.

    Article  ADS  Google Scholar 

  11. A. A. Herrero, H. Guerrero, and D. Levy, “High-sensitivity sensor of low relative humidity based on overlay on side-polished fibers,” IEEE Sensors Journal, 2004, 4(1): 52–56.

    Article  ADS  Google Scholar 

  12. L. Xu, J. C. Fanguy, K. Soni, and S. Tao, “Optical fiber humidity sensor based on evanescent-wave scattering,” Optics Letters, 2004, 29(11): 1191–1193.

    Article  ADS  Google Scholar 

  13. J. M. Corres, J. Bravo, I. R. Matias, and F. J. Arregui, “Nonadiabatic tapered single-mode fiber coated with humidity sensitive nanofilms,” IEEE Photonics Technology Letters, 2006, 18(8): 935–937.

    Article  ADS  Google Scholar 

  14. P. Kronenberg, P. K. Rastogi, P. Giaccari, and H. G. Limberger, “Relative humidity sensor with optical fiber Bragg gratings,” Optics Letters, 2002, 27(16): 1385–1387.

    Article  ADS  Google Scholar 

  15. S. Luo, Y. Liu, A. Sucheta, M. Evans, and R. V. Tassell, “Applications of LPG fiber optical sensors for relative humidity and chemical-warfare-agents monitoring,” Advanced Sensor Systems and Applications, 2002, 4920: 193–205.

    Article  ADS  Google Scholar 

  16. K. M. Tan, C. M. Tay, S. C. Tjin, C. C. Chan, and H. Rahardjo, “High relative humidity measurements using gelatin coated long-period grating sensors,” Sensors and Actuators B: Chemical, 2005, 110(2): 335–341.

    Article  Google Scholar 

  17. M. Konstantaki, S. Pissadakis, S. Pispas, N. Madamopoulos, and N. A. Vainos, “Optical fiber long-period grating humidity sensor with poly (ethylene oxide)/cobalt chloride coating,” Applied Optics, 2006, 45(19): 4567–4571.

    Article  ADS  Google Scholar 

  18. S. H. Lim, L. Feng, J. W. Kemling, C. J. Musto, and K. S. Suslick, “An optoelectronic nose for detection of toxic gases,” Nature Chemistry, 2009, 1(7): 562–567.

    Article  ADS  Google Scholar 

  19. K. M. Kadish, K. M. Smith, and R. Guilard, Handbook of the Porphyrin: inorganic, organometallic and coordination chemistry. Amsterdam, Netherlands: Elsevier, 2000.

    Google Scholar 

  20. X. B. Zhang, Z. Z. Li, C. C. Guo, S. H. Chen, G. L. Shen, and R. Q. Yu, “Porphyrin-metalloporphyrin composite based optical fiber sensor for the determination of berberine,” Analytica Chimica Acta, 2001, 439(1): 65–71.

    Article  Google Scholar 

  21. X. B. Zhang, C. C. Guo, Z. Z. Li, G. L. Shen, and R. Q. Yu, “An optical fiber chemical sensor for mercury ions based on a porphyrin dimer,” Analytical Chemistry, 2002, 74(4): 821–825.

    Article  Google Scholar 

  22. R. Ni, R. B. Tong, C. C. Guo, G. L. Shen, and R. Q. Yu, “An anthracene/porphyrin dimer fluorescence energy transfer sensing system for picric acid,” Talanta, 2004, 63(2): 251–257.

    Article  Google Scholar 

  23. G. Huyang, J. Canning, M. L. Aslund, D. Stocks, T. Khoury, and M. J, Crossley, “Evaluation of optical fiber microcell reactor for use in remote acid sensing,” Optics Letters, 2010, 35(6): 817–819.

    Article  ADS  Google Scholar 

  24. R. Selyanchyn, S. Korposh, W. Yasukochi, and S. W. Lee, “A preliminary test for skin gas assessment using a porphyrin based evanescent wave optical fiber sensor,” Sensors & Transducers, 2011, 125(2): 54–67.

    Google Scholar 

  25. S. Stelitano, G. De Luca, S. Savasta, and S. Patané, “Polarized emission from high quality microcavity based on active organic layered domains,” Applied Physics Letters, 2008, 93(19): 193302-1–193302-3.

    Article  ADS  Google Scholar 

  26. K. Araki, M. J. Wagner, and M. S. Wrighton, “Layer-by-layer growth of electrostatically assembled multilayer porphyrin films,” Langmuir, 1996, 12(22): 5393–5398.

    Article  Google Scholar 

  27. Z. J. Zhang, S. F. Hou, Z. H. Zhu, and Z. F. Liu, “Preparation and characterization of a porphyrin self-assembled monolayer with a controlled orientation on gold,” Langmuir, 2000, 16(2): 537–540.

    Article  Google Scholar 

  28. L. M. Scolaro, A. Romeo, M. A. Castriciano, G. De Luca, S. Patanè, and N. Micali, “Porphyrin deposition induced by UV irradiation,” Journal of the American Chemical Society, 2003, 125(8): 2040–2041.

    Article  Google Scholar 

  29. G. D. Luca, G. Pollicino, A. Romeo, S. Patanè, and L. M. Scolaro, “Control over the optical and morphological properties of UV-deposited porphyrin structures,” Chemistry of Materials, 2006, 18(23): 5429–5436.

    Article  Google Scholar 

  30. G. D. Luca, G. Pollicino, A. Romeo, and L. M. Scolaro, “Sensing behavior of tetrakis (4-sulfonatophenyl) porphyrin thin films,” Chemistry of Materials, 2006, 18(8): 2005–2007.

    Article  Google Scholar 

  31. D. P. Bhopate, K. Kim, P. G. Mahajan, A. H. Gore, S. R. Patil, S. M. Majhi, et al., “Fluorescent chemosensor for quantitation of multiple atmospheric gases,” Journal of Nanomed Nanotechnol, 2017, 8(2): 1–9.

    Google Scholar 

  32. A. Bahrampour, A. Iadicicco, G. D. Luca, M. Giordano, A. Borriello, A. Cutolo, et al., “Porphyrin thin films on fibre optic probes through UV-light induced deposition,” Optics & Laser Technology, 2013, 49: 279–283.

    Article  ADS  Google Scholar 

  33. A. Bahrampour, A. Iadicicco, G. D. Luca, M. Giordano, A. Cutolo, L. M. Scolaro, et al., “Sensing characteristics to acid vapors of a TPPS coated fiber optic: a preliminary analysis,” World Academy of Science, Engineering and Technology, International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering, 2012, 6(11): 989–992.

    Google Scholar 

  34. G. De Luca, A. Romeo, V. Villari, N. Micali, I. Foltran, E. Foresti, et al., “Self-organizing functional materials via ionic self assembly: porphyrins H- and J-aggregates on synthetic chrysotile nanotubes,” Journal of the American Chemical Society, 2009, 131(20): 6920–6921.

    Article  Google Scholar 

  35. G. Scheibe, “Variability of the absorption spectra of some sensitizing dyes and its cause,” Angewandte Chemie, 1936, 49: 563–564.

    Google Scholar 

  36. G. Scheibe, “Über die veränderlichkeit der absorptionsspektren in lösungen und die nebenvalenzen als ihre ursache,” Angewandte Chemie, 1937, 50(11): 212–219.

    Article  Google Scholar 

  37. E. E. Jelley, “Spectral absorption and fluorescence of dyes in the molecular state,” Nature, 1936, 138(3502): 1009–1010.

    Article  ADS  Google Scholar 

  38. J. S. Briggs and A. Herzenberg, “Sum rules for the vibronic spectra of helical polymers,” Journal of Physics B: Atomic and Molecular Physics, 1970, 3(12): 1663–1676.

    Article  ADS  Google Scholar 

  39. F. C. Spano and C. Silva, “H-and J-aggregate behavior in polymeric semiconductors,” Annual Review of Physical Chemistry, 2014, 65: 477–500.

    Article  ADS  Google Scholar 

  40. M. Sauer and J. Hofkens, Handbook of fluorescence spectroscopy and imaging: from ensemble to single molecules. Hoboken, New Jersey, USA: John Wiley & Sons, 2010: 1–290.

    Google Scholar 

  41. A. Eisfeld and J. S. Briggs, “The J- and H-bands of organic dye aggregates,” Chemical Physics, 2006, 324(2–3): 376–384.

    Google Scholar 

  42. R. H. Tredgold, “Langmuir-blodgett films: organic monolayer imaged,” Nature, 1985: 313(6001): 348–348.

    Article  ADS  Google Scholar 

  43. K. M. Lenahan, Y. X. Wang, Y. Liu, R. O. Claus, J. R. Heflin, D. Marciu, et al., “Novel polymer dyes for nonlinear optical applications using ionic self-assembled monolayer technology,” Advanced Materials, 1998, 10(11): 853–855.

    Article  Google Scholar 

  44. A. Bahrampour, “New hollow core fiber design and porphyrin thin film deposition method towards enhanced optical fiber sensors,” Ph.D. dissertation, University of Naples, Italy, 2013.

    Google Scholar 

  45. R. F. Pasternack, P. R. Huber, P. Boyd, G. Engasser, L. Francesconi, E. Gibbs, et al., “Aggregation of meso-substituted water-soluble porphyrins,” Journal of the American Chemical Society, 1972, 94(13): 4511–4517.

    Article  Google Scholar 

  46. P. J. Collings, E. J. Gibbs, T. E. Starr, O. Vafek, C. Yee, L. A. Pomerance, et al., “Resonance light scattering and its application in determining the size, shape, and aggregation number for supramolecular assemblies of chromophores,” The Journal of Physical Chemistry B, 1999, 103(40): 8474–8481.

    Article  Google Scholar 

  47. A. G. Ardakani, S. M. Mahdavi, and A. R. Bahrampour, “Time-dependent theory for random lasers in the presence of an inhomogeneous broadened gain medium such as PbSe quantum dots,” Applied Optics, 2013, 52(6): 1317–1324.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Faculty of Physics, Shahid Bahonar University of Kerman, Kerman, 7616914111, Iran

    Mahboubeh Dehghani Sanij

  2. Department of Physics, Sharif University of Technology, Tehran, 1458889694, Iran

    Abolfazl Bahrampour & Ali Reza Bahrampour

Authors
  1. Mahboubeh Dehghani Sanij
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Abolfazl Bahrampour
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Ali Reza Bahrampour
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Mahboubeh Dehghani Sanij.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://doi.org/creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehghani Sanij, M., Bahrampour, A. & Bahrampour, A.R. Resonant Light Scattering Toward Optical Fiber Humidity Sensors. Photonic Sens 9, 60–68 (2019). https://doi.org/10.1007/s13320-018-0519-4

Download citation

  • Received: 07 April 2018

  • Revised: 04 August 2018

  • Published: 06 November 2018

  • Issue Date: March 2019

  • DOI: https://doi.org/10.1007/s13320-018-0519-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Humidity
  • chemical
  • porphyrin-based
  • chemical optical fiber sensor

Working on a manuscript?

Avoid the common mistakes

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature