Realization of Low-Cost Multichannel Surface Plasmon Resonance Based Optical Transducer

Abstract

This paper demonstrates a low-cost and portable multichannel surface plasmon resonance (SPR) based optical transducer. The system’s portability is achieved through the development of compact web-cam based spectrometer, and edge coupling to the SPR chip. Here, two configurations are presented: single-channel integrated system and two-channel system where the SPR chip and the spectrometer are coupled by a pair of plastic optical fibers. For the two-channel configuration, two different approaches are utilized to extract the optical spectrum: manual region cropping and automatic regions detection. For both approaches, image distortion and the size of the fiber tip affect the measured spectrum. For all configurations, mechanical alignment and mounting are made by 3D printing. The developed systems are tested with water and glycerol solution of different concentrations. The measured sensitivity is in the order of 10‒4 RIU (refractive index unit) for all systems under the ambient condition.

References

  1. [1]

    M. G. Manera and R. Rella, “Improved gas sensing performances in SPR sensors by transducers activation,” Sensors and Actuators B: Chemical, 2013, 179(4): 175–186.

    Article  Google Scholar 

  2. [2]

    R. Galatus, B. Feier, C. Cristea, N. Cennamo, and L. Zeni, “SPR based hybrid electro-optic biosensor for β-lactam antibiotics determination in water,” SPIE, 2017, 10405: 104050C–1–104050C–6.

    Google Scholar 

  3. [3]

    F. Geiss, S. Fossati, I. Khan, N. G. Quilis, W. Knoll, and J. Dostalek, “UV-SPR biosensor for biomolecular interaction studies,” SPIE, 2017, 10231: 1023107–1–1023107–8.

    Google Scholar 

  4. [4]

    H. H. Kyaw, S. Boonruang, W. S. Mohammed, and J. Dutta, “Design of electric-field assisted surface plasmon resonance system for the detection of heavy metal ions in water,” AIP Advances, 2015, 5(10): 246–253.

    Article  Google Scholar 

  5. [5]

    Y. H. Choi, G. Y. Lee, H. Ko, Y. W. Chang, M. J. Kang, and J. C. Pyun, “Development of SPR biosensor for the detection of human hepatitis B virus using plasma-treated parylene-N film,” Biosensors and Bioelectronics, 2014, 56(56): 286–294.

    Article  Google Scholar 

  6. [6]

    X. L. Zhang, Y. Liu, T. Fan, N. Hu, Z. Yang, X. Chen, et al., “Design and performance of a portable and multichannel SPR device,” Sensors, 2017, 17(6): 1435–1–1435–7.

    Article  Google Scholar 

  7. [7]

    S. Maegawa, J. Yamaguchi, F. Itoigawa, and T. Nakamura, “Discussion on surface plasmon resonance technique in the Otto configuration for measurement of lubricant film thickness,” Tribology Letters, 2016, 62(2): 1–14.

    Google Scholar 

  8. [8]

    C. Thirstrup, W. Zong, M. Borre, H. Neff, H. C. Pedersen, and G. Holzhueter, “Diffractive optical coupling element for surface plasmon resonance sensors,” Sensors and Actuators B: Chemical, 2004, 100(3): 298–308.

    Article  Google Scholar 

  9. [9]

    Q. Liu, Y. Liu, S. M. Chen, F. Wang, and W. Peng, “A low-cost and portable dual-channel fiber optic surface plasmon resonance system,” Sensors, 2017, 17(12): 2797–1–2797–8.

    Article  Google Scholar 

  10. [10]

    M. Somarapalli, K. Koul, R. Lahon, S. Boonruang, and W. S. Mohammed, “Demonstration of low-cost and compact SPR optical transducer through edge light coupling,” Micro & Nano Letters, 2017, 12(9): 643–646.

    Article  Google Scholar 

  11. [11]

    S. Nizamov, V. Scherbahn, and V. M. Mirsky, “Self-referencing SPR-sensor based on integral measurements of light intensity reflected by arbitrarily distributed sensing and referencing spots,” Sensors and Actuators B: Chemical, 2015, 207: 740–747.

    Article  Google Scholar 

  12. [12]

    X. L. Zhou, K. Chen, L. Li, W. Peng, and Q. X. Yu, “Angle modulated surface plasmon resonance spectrometer for refractive index sensing with enhanced detection resolution,” Optics Communications, 2017, 382: 610–614.

    ADS  Article  Google Scholar 

  13. [13]

    H. Zhang, D. Q. Song, S. Gao, H. Q. Zhang, J. Zhang, and Y. Sun, “Enhanced wavelength modulation SPR biosensor based on gold nanorods for immunoglobulin detection,” Talanta, 2013, 115(115): 857–862.

    Article  Google Scholar 

  14. [14]

    T. M. Chinowsky, J. G. Quinn, D. U. Bartholomew, R. Kaiser, and J. L. Elkind, “Performance of the Spreeta 2000 integrated surface plasmon resonance affinity sensor,” Sensors and Actuators B: Chemical, 2003, 91(1): 266–274.

    Article  Google Scholar 

  15. [15]

    G. Neuert, S. Kufer, M. Benoit, and H. E. Gaub, “Modular multichannel surface plasmon spectrometer,” Review of Scientific Instruments, 2005, 76(5): 054303–1–054303–4.

    ADS  Article  Google Scholar 

  16. [16]

    S. Rampazzi, G. Danese, F. Leporati, and F. Marabelli, “A localized surface plasmon resonance-based portable instrument for quick on-site biomolecular detection,” IEEE Transactions on Instrumentation and Measurement, 2016, 65(2): 317–327.

    Article  Google Scholar 

  17. [17]

    I. Khodadad, N. Abedzadeh, V. Lakshminarayan, and S. S. Saini, “Low cost spectrometer and learning applications for exposing kids to optics,” SPIE, 2015, 9793: 97932W–1–97932W–5.

    ADS  Google Scholar 

  18. [18]

    A. J. S. McGonigle, T. C. Wilkes, T. D. Pering, J. R. Willmott, J. M. Cook, F. M. Mims, et al., “Smartphone spectrometers,” Sensors, 2018, 18(1): 223–1–223–15.

    Article  Google Scholar 

  19. [19]

    Y. Liu, S. Chen, Q. Liu, J. F. Masson, and W. Peng, “Compact multi-channel surface plasmon resonance sensor for real-time multi-analyte biosensing,” Optics Express, 2015, 23(16): 20540–20548.

    ADS  Article  Google Scholar 

  20. [20]

    D. Whittaker and I. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Physical Review B, 1999, 60(4): 2610–2618.

    ADS  Article  Google Scholar 

  21. [21]

    R. C. Hall, R. Mittra, and K. M. Mitzner, “Analysis of multilayered periodic structures using generalized scattering matrix theory,” IEEE Transactions on Antennas and Propagation, 1988, 36(4): 511–517.

    ADS  Article  Google Scholar 

  22. [22]

    S. Chah, J. Yi, and R. N. Zare, “Surface plasmon resonance analysis of aqueous mercuric ions,” Sensors and Actuators B: Chemical, 2004, 99(2): 216–222.

    Article  Google Scholar 

  23. [23]

    P. Zhang, Y. P. Chen, W. Wang, Y. Shen, and J. S. Guo, “Surface plasmon resonance for water pollutant detection and water process analysis,” Trends in Analytical Chemistry, 2016, 85: 153–165.

    Article  Google Scholar 

  24. [24]

    L. Goldman and A. I. Schafer, Goldman’s cecil medicine E-book. Oxford, UK: Elsevier Health Sciences, 2011: 1–2704.

    Google Scholar 

  25. [25]

    A. S. Shcherbakov, A. O. Arellanes, and V. Chavushyan, “Optical spectrometer with acousto-optical dynamic grating for guillermo haro astrophysical observatory,” International Journal of Astronomy & Astroph, 2013, 3(4): 376–384.

    ADS  Article  Google Scholar 

  26. [26]

    N. Blind, E. L. Coarer, P. Kern, and S. Gousset, “Spectrographs for astrophotonics,” Optics Express, 2017, 25(22): 27341–27369.

    ADS  Article  Google Scholar 

  27. [27]

    E. C. Cull, M. E. Gehm, S. T. McCain, B. D. Guenther, and D. J. Brady, “Multimodal optical spectrometers for remote chemical detection,” SPIE, 2005, 5778: 376–383.

    ADS  Google Scholar 

  28. [28]

    W. K. Kuo and C. J. Hsu, “Two-dimensional grating guided-mode resonance tunable filter,” Optics Express, 2017, 25(24): 29642–29649.

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Manjunath Somarapalli.

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Somarapalli, M., Jolivot, R. & Mohammed, W. Realization of Low-Cost Multichannel Surface Plasmon Resonance Based Optical Transducer. Photonic Sens 8, 289–302 (2018). https://doi.org/10.1007/s13320-018-0511-z

Download citation

Keywords

  • Plasmon
  • optical diffraction grating
  • optical fibers
  • spectrometer
  • 3D design
  • image processing