Photonic Sensors

, Volume 8, Issue 2, pp 114–118 | Cite as

Brillouin Scattering Spectrum Analysis Based on Auto-Regressive Spectral Estimation

  • Mengyun Huang
  • Wei Li
  • Zhangyun Liu
  • Linghao Cheng
  • Bai-Ou Guan
Open Access


Auto-regressive (AR) spectral estimation technology is proposed to analyze the Brillouin scattering spectrum in Brillouin optical time-domain refelectometry. It shows that AR based method can reliably estimate the Brillouin frequency shift with an accuracy much better than fast Fourier transform (FFT) based methods provided the data length is not too short. It enables about 3 times improvement over FFT at a moderate spatial resolution.


Brillouin optical time-domain reflectometry (BOTDR) auto-regressive (AR) model spectral estimation distributed fiber-optic sensing 



This work was supported by the National Natural Science Foundation of China (Grant Nos. 11474133 and 61235005) and Science and Technology Program of Guangzhou (No. 201707010338).


  1. [1]
    A. Yeniay, J. M. Delavaux, and J. Toulouse, “Spontaneous and stimulated Brillouin scattering gain spectra in optical fibers,” Journal of Lightwave Technology, 2002, 20(8): 1425–1432ADSCrossRefGoogle Scholar
  2. [2]
    P. Stoica and R. Moses, Spectral analysis of signals. New Jersey, USA: Prentice Hall, 2005: 1–452.Google Scholar
  3. [3]
    J. H. Geng, S. Staines, M. Blake, and S. B. Jiang, “Distributed fiber temperature and strain sensor using coherent radio-frequency detection of spontaneous Brillouin scattering,” Applied Optics, 2007, 46(23): 5928–5932.ADSCrossRefGoogle Scholar
  4. [4]
    F. Wang, X. P. Zhang, Y. G. Lu, R. R. Dou, and X. Y. Bao, “Spatial resolution analysis for discrete Fourier transform-based Brillouin optical time domain reflectometry,” Measurement Science & Technology, 2009, 20(2): 025202-1–025202-6.Google Scholar
  5. [5]
    G. J. Tu, X. P. Zhang, Y. X. Zhang, Z. F. Ying, and L. D. Lu, “Strain variation measurement with shorttime Fourier transform-based Brillouin optical time-domain reflectometry sensing system,” Electronics Letters, 2014, 50(22): 1624–1626.CrossRefGoogle Scholar
  6. [6]
    Y. F. Yu, L. Q. Luo, B. Li, L. F. Guo, J. Z. Yan, and K. Soga, “Double peak-induced distance error in short-time-Fourier-transform-Brillouin optical time domain reflectometers event detection and the recovery method,” Applied Optics, 2015, 54(28): E196–E202.ADSCrossRefGoogle Scholar
  7. [7]
    F. Wang, C. H. Zhu, C. Q. Cao, and X. P. Zhang, “Enhancing the performance of BOTDR based on the combination of FFT technique and complementary coding,” Optics Express, 2017, 25(4): 3504–3513ADSCrossRefGoogle Scholar
  8. [8]
    F. Laeri, “Some comments on maximum entropy spectral analysis of time series,” Computers in Physics, 1990, 4(6): 627–636ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Mengyun Huang
    • 1
  • Wei Li
    • 1
  • Zhangyun Liu
    • 1
  • Linghao Cheng
    • 1
  • Bai-Ou Guan
    • 1
  1. 1.Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics TechnologyJinan UniversityGuangzhouChina

Personalised recommendations