Design and Analysis of 2D Photonic Crystal Based Biosensor to Detect Different Blood Components

Abstract

In this paper, a photonic crystal ring resonator based bio sensor is designed to sense different blood constituents in blood in the wavelength range of 1530 nm‒1615 nm for biomedical applications. The blood constituents such as hemoglobin white blood cell, red blood cell, blood sugar, blood urea, albumin, serum bilirubin direct, and ammonia are sensed for the corresponding transmission output power, Q factor, and refractive index changes. As the blood constituent has unique refractive index, the resonant wavelength and output power are varied from one to another, which are used to identify the blood constituents.

References

  1. [1]

    J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic crystals molding the flow of light. NJ, USA: Princeton University Press Princeton, 2008: 1–304.

    Google Scholar 

  2. [2]

    F. L. Hsiao and C. Lee, “Novel biosensor based on photonic crystal nano-ring resonator,” Procedia Chemistry, 2009, 1(1): 417–420.

    ADS  Article  Google Scholar 

  3. [3]

    P. Sharma and P. Sharan, “Design of photonic crystal based ring resonator for detection of different blood constituents,” Optics Communication, 2015, 348: 19–23.

    ADS  Article  Google Scholar 

  4. [4]

    P. Sharma and P. Sharan, “Photonic crystal based ring resonator sensor for detection of glucose concentration for biomedical application,” International Journal of Emerging Technology and Advanced Engineering, 2014, 4(30): 702–706.

    Google Scholar 

  5. [5]

    M. Lee and P. M. Fauchet, “Two-dimensional silicon photonic crystal based bio sensing platform for protein detection,” Optics Express, 2007, 15(8): 4530–4535.

    ADS  Article  Google Scholar 

  6. [6]

    Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. Müller, “Optical properties of circulating human blood in the wavelength range 400–2500 nm,” Journal of Biomedical Optics, 1994, 4(1): 36–46.

    Google Scholar 

  7. [7]

    M. Friebel and M. Meinke, “Determination of the complex refractive index of highly concentrated hemoglobin solutions using transmittance and reflectance measurements,” Journal of Biomedical Optics, 2005, 10(6): 064019–1–064019–5.

    ADS  Article  Google Scholar 

  8. [8]

    A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. Müller, “Optical properties of circulating human blood in the wavelength range 400–2500 nm,” Journal of Biomedical Optics, 1999, 1(1): 36–46.

    ADS  Article  Google Scholar 

  9. [9]

    L. G. Lindberg and P. A. Öberg, “Optical properties of blood in motion,” Optical Engineering, 1993, 32(2): 253–257.

    ADS  Article  Google Scholar 

  10. [10]

    A. M. K. Enejder, J. Swartling, P. Aruna, and S. A. Engels, “Influence of cell shape and aggregate formation on the optical properties of flowing whole blood,” Applied Optics, 2003, 42(7): 1384–1394.

    ADS  Article  Google Scholar 

  11. [11]

    V. S. Lee and L. Tarassenko, “Absorption and multiple scattering by suspensions of aligned red blood cells,” Journal of the Optical Society of America, 1993, 8(7): 1135–1141.

    ADS  Article  Google Scholar 

  12. [12]

    R. Bayer, S. Çaglayan, and B. Günther, “Discrimination between orientation and elongation of RBC in laminar flow by means of laser diffraction,” SPIE, 1993, 2136: 105–113.

    ADS  Google Scholar 

  13. [13]

    X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Analytica Chimica Acta, 2008, 6(20): 8–26.

    Article  Google Scholar 

  14. [14]

    R. W. Boyd and J. E. Heebner, “Sensitive disk resonator photonic biosensor,” Applied Optics, 2001, 18(31): 15742–5747.

    Google Scholar 

  15. [15]

    I. M. White and X. Fan, “On the performance quantification of resonant Refractive index sensors,” Optics Express, 2008, 16(2): 1020–1028.

    ADS  Article  Google Scholar 

  16. [16]

    C. Kang, C. Phare, and S. M. Weiss, “Photonic crystal defects with increased surface area for improved refractive index sensing,” in Proceeding of Conference on Laser and Electro Optics and Quantum Electronics and laser Science, San Jose, California, United States, 2010, pp. 1–2.

    Google Scholar 

  17. [17]

    E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Physical Review Letters, 1987, 58(23): 2059–2062.

    ADS  Article  Google Scholar 

  18. [18]

    S. John, “Strong localization of photons in certain disordered dielectric super lattices,” Physical Review Letters, 1987, 58(20): 2486–2489.

    ADS  Article  Google Scholar 

  19. [19]

    C. Lee, J. Thillaigovindan, and R. Radhakrishnan: “Design and modeling of nano mechanical sensors using silicon 2-D photonic crystals,” Journal of Light Wave Technology, 2008, 26(7): 839–846.

    ADS  Article  Google Scholar 

  20. [20]

    S. Robinson and R. Nakkeeran, “Photonic crystal ring resonator-based add drop filters: a review,” SPIE, 2013, 52(6): 1–15.

    Google Scholar 

  21. [21]

    V. D. Kuma, “Analysis and simulations of photonic crystal components for optical communication,” Ph.D. dissertation, Helsinki University of Technology, Helsinki, Finland, 2003.

    Google Scholar 

  22. [22]

    Y. Liu and H. W. M. Salemink, “Photonic crystal-based all-optical on-chip sensor,” Optics Express, 2012, 20(18): 19912–19920.

    ADS  Article  Google Scholar 

  23. [23]

    K. V. Shanthi and S. Robinson, “Two-dimensional photonic crystal based sensor for pressure sensing,” Photonic Sensors, 2014, 4(3): 248–253.

    ADS  Article  Google Scholar 

  24. [24]

    M. Radhouene, M. K. Chhipa, M. Najjar, S. Robinson, and B. Suthar, “Novel design of ring resonator based temperature sensor using photonics technology,” Photonic Sensors, 2017, 7(4): 311–316.

    ADS  Article  Google Scholar 

  25. [25]

    T. Zouache, A. Hocini, A. Harhouz, and R. Mokhtari, “Design of pressure sensor based on two-dimensional photonic crystal,” Acta Physica Polonica, 2017, 131(1): 68–70.

    Article  Google Scholar 

  26. [26]

    S. Robinson and R. Nakkeeran, “PC based optical salinity sensor for different temperatures,” Photonic Sensors, 2012, 2(2): 187–192.

    ADS  Article  Google Scholar 

  27. [27]

    W. C. L. Hopman, P. Pottier, D. Yudistira, J. V. Lith, P. V. Lambeck, R. M. D. L. Rue, et al., “Quasi-one-dimensional photonic crystal as a compact building block for refract metric optical sensors,” IEEE Journal of Selected Topics in Quantum Electron, 2005, 11(1): 11–16.

    ADS  Article  Google Scholar 

  28. [28]

    V. S. Lee and L. Tarassenko, “Absorption and multiple scattering by suspensions of aligned red blood cells,” Journal of the Optical Society of America, 1991, 8(7): 1135–1141.

    ADS  Article  Google Scholar 

  29. [29]

    R. Bayer, S. Çaglayan, and B. Günther, “Discrimination between orientation and elongation of RBC in laminar flow by means of laser diffraction,” SPIE, 1994, 2136: 105–113.

    ADS  Google Scholar 

  30. [30]

    A. M. K. Enejder, J. Swartling, P. Aruna, and S. A. Engels, “Influence of cell shape and aggregate formation on the optical properties of flowing whole blood,” Applied. Optics, 2003, 42(7): 1384–1394.

    ADS  Article  Google Scholar 

  31. [31]

    L. G. Lindberg and P. A. Öberg, “Optical properties of blood in motion,” Optical Engineering, 1993, 32(2): 253–257.

    ADS  Article  Google Scholar 

  32. [32]

    P. Sharma and P. Sharan, “An analysis and design of photonic crystal based bio chip for detection of glycosuria,” IEEE Sensor Journal, 2016, 15(10): 5569–5575.

    ADS  Article  Google Scholar 

  33. [33]

    T. Dharchana, A. Sivanantharaja, and S. Selvendran, “Design of pressure sensor using 2D photonic crystal,” Advances in Natural and Applied Sciences, 2017, 11(7): 26–30.

    Google Scholar 

  34. [34]

    V. Sharma and V. L. Kalyani, “Design two dimensional nanocavity photonic crystal biosensor detection in malaria,” International Journal of Emerging Research in Management and Technology, 2017, 6(6): 16–20.

    Article  Google Scholar 

  35. [35]

    S. Robinson and R. Nakkeeran, “PCRR based bandpass filter for C and L+U bands of ITU-T G.694.2 CWDM systems,” Optics and Photonics Journal, 2011, 1(3): 142–149.

    ADS  Article  Google Scholar 

  36. [36]

    G. Pelosi, R. Coccioli, and S. Selleri, Quick finite elements for electromagnetic waves. Boston, London, England: Artech House, 1997: 1–289.

    Google Scholar 

  37. [37]

    A. Taflove and S. C. Hagness, Computational electrodynamics: the finite-difference time-domain method. Boston, London, England: Artech House, 2005: 1–1038.

    Google Scholar 

  38. [38]

    S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency domain methods for Maxwell’s equation in a plane wave basis,” Optics Express, 2000, 11(3): 173–190.

    Article  Google Scholar 

  39. [39]

    S. Guo and S. Alloin, “Simple plane wave implementation for photonic crystal calculation,” Optics Express, 2003, 11(2): 167–175.

    ADS  Article  Google Scholar 

  40. [40]

    R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, “Numerical techniques for modeling guided-wave photonic devices,” IEEE Journal of Selected Topics in Quantum Electronics, 2000, 6(1): 150–162.

    ADS  Article  Google Scholar 

  41. [41]

    M. Loncar, J. Vuckovic´, and A. Scherer, “Methods for controlling positions of guided modes of photonic-crystal waveguides,” Optical Society of America, 2001, 18(9): 1362–1368.

    ADS  Article  Google Scholar 

  42. [42]

    S. P. Guo, S. Albin´, and A. Scherer, “Numerical techniques for excitation and analysis of defect modes in photonic crystals,” Optical Society of America, 2003, 11(9): 1080–1089.

    Google Scholar 

  43. [43]

    Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nano cavity in a two dimensional photonic crystal,” Nature, 2003, 425: 944–947.

    ADS  Article  Google Scholar 

  44. [44]

    F. DellOlio, C. Ciminelli, D. Conteduca, and M. N. Armenise, “Effect of fabrication tolerances on the performance of two dimensional polymer photonic crystal channel drop filter: a theoretical investigation based on the finite element method,” Optical Engineering, 2013, 52(9): 097104–1–097104–7.

    ADS  Article  Google Scholar 

  45. [45]

    M. Radhouene, M. K. Chhipa, M. Najjar, S. Robinson, and B. Suthar, “Novel design of ring resonator based temperature sensor using photonics technology,” Photonic Sensors, 2017, 7(4): 1–6.

    Article  Google Scholar 

  46. [46]

    C. S. Mallika, I. Bahaddur, P. C. Srikanth, and P. Sharan, “Photonic crystal ring resonator structure for temperature measurement,” Optik, 2015, 126(20): 2252–2255.

    ADS  Article  Google Scholar 

  47. [47]

    T. T. Mai, F. L. Hsiao, C. K. Lee, W. F. Xiang, C. C. Chen, and W. K. Choi, “Optimization and comparison of photonic crystal resonators for silicon micro cantilever sensors,” Sensors and Actuators A: Physical, 2010, 165: 16–25.

    Article  Google Scholar 

  48. [48]

    B. Li and C. K. Lee, “NEMS diaphragm sensors integrated with triple-nano-ring resonator,” Sensors and Actuators A: Physical, 2011, 172: 61–68.

    Article  Google Scholar 

  49. [49]

    T. Sreenivasulu, V. Rao, T. Badrinarayana, G. K. Hegde, and T. Srinivas, “Photonic crystal ring resonator based force sensor: design and analysis,” Optik, 2018, 155: 111–120.

    Article  Google Scholar 

  50. [50]

    S. Olyaee and A. M. Bahabady, “Two-curve-shaped biosensor using photonic crystal nano-ring resonators,” Journal of Nanostructures, 2014, 4: 303–308.

    Google Scholar 

  51. [51]

    L. J. Huang, H. P. Tian, D. Q. Yang, J. Zhou, Q. Liu, P. Zhang, et al., “Optimization of figure of merit in label-free biochemical sensors by designing a ring defect coupled resonator,” Optics Communication, 2014, 332: 42–49.

    ADS  Article  Google Scholar 

  52. [52]

    S. Olyaee and A. M. Bahabady, “Designing a novel photonic crystal nano-ring resonator for biosensor application,” Optical & Quantum Electronics, 2015, 47: 1881–1888.

    Article  Google Scholar 

  53. [53]

    A. Harhouz and A. Hocini, “Design of high-sensitive biosensor based on cavity-waveguides coupling in 2D photonic crystal,” Journal of Electromagnic Wave Applications, 2015, 29(5): 659–667.

    Article  Google Scholar 

  54. [54]

    A. Hocini and A. Harhouz, “Modeling and analysis of the temperature sensitivity in two dimensional photonic crystal microcavity,” Journal of Nanophotonics, 2016, 10(1): 016007–016010.

    ADS  Article  Google Scholar 

  55. [55]

    S. Arafa, M. Bouchemat, T. Bouchemat, A. Benmerkhi, and A. Hocini, “Infiltrated photonic crystal cavity as a highly sensitive platform for glucose concentration detection,” Optics Communication, 2017, 384: 93–100.

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rajendran Arunkumar.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://doi.org/creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Arunkumar, R., Suaganya, T. & Robinson, S. Design and Analysis of 2D Photonic Crystal Based Biosensor to Detect Different Blood Components. Photonic Sens 9, 69–77 (2019). https://doi.org/10.1007/s13320-018-0479-8

Download citation

Keywords

  • Photonic crystal
  • plane wave expansion (PWE)
  • finite difference time domain (FDTD)
  • biosensor
  • blood components