Detection of Ethanol Using a Tunable Interband Cascade Laser at 3.345 μm

Abstract

With the progress of the laser manufacturing technology, trace gas sensors based on tunable interband cascade lasers (ICLs) and quantum cascade lasers (QCLs) have been widely used to detect organic compounds with high sensitivity. Compared with overtone and combination bands in the near infrared region, for many species, the intensities of fundamental rotational-vibrational absorption bands in the mid-infrared region are much stronger. In this paper, we demonstrate an ethanol sensor using a room-temperature continuous-wave (CW) tunable ICL laser as a light source to detect ethanol vapor concentration with high sensitivity. Combined with the first harmonic (1f) normalized second harmonic (2f) wavelength modulation spectroscopy (WMS) technology, the characteristics of the harmonics of the system are analyzed, and the amplitude of the first harmonic decrease with an increased concentration of ethanol has been demonstrated both theoretically and experimentally. As a result, a detection limitation of 28 ppb is achieved.

References

  1. [1]

    Y. V. Rodionov, O. I. Keppen, and M. V. Sukhacheva, “A photometric assay for ethanol,” Applied Biochemistry and Microbiology, 2002, 38(4): 395–396.

    Article  Google Scholar 

  2. [2]

    Y. S. Chen and J. H. Huang, “Arrayed CNT-Ni nanocomposites grown directly on Si substrate for amperometric detection of ethanol,” Biosens Bioelectron, 2010, 26(1): 207–212.

    Article  Google Scholar 

  3. [3]

    L. V. Shkotova, A. P. Soldatkin, M. V. Gonchar, W. Schuhmann, and S. V. Dzyadevych, “Amperometric biosensor for ethanol detection based on alcohol oxidase immobilised within electrochemically deposited Resydrol film,” Materials Science & Engineering C-Biomimetic and Supramolecular Systems, 2006, 26(2–3): 411–414.

    Article  Google Scholar 

  4. [4]

    M. Schuetz, J. Bufton, and C. R. Prasad, “A mid-IR DIAL system using interband cascade laser diodes,” in Proceeding of Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Baltimore, Maryland, USA, 2007, pp. 1–2.

    Google Scholar 

  5. [5]

    J. Kubicki, J. Mlynczak, and K. Kopczynski, “Application of modified difference absorption method to stand-off detection of alcohol in simulated car cabins,” Journal of Applied Remote Sensing, 2013, 7(8): 1–13.

    Google Scholar 

  6. [6]

    P. O. Idwasi, G. W. Small, R. J. Combs, R. B. Knapp, and R. T. Kroutil, “Multiple filtering strategy for the automated detection of ethanol by passive Fourier transform infrared spectrometry,” Applied Spectroscopy, 2001, 55(11): 1544–1552.

    ADS  Article  Google Scholar 

  7. [7]

    T. Tarumi, G. W. Small, R. J. Combs, and R. T. Kroutil, “Remote detection of heated ethanol plumes by airborne passive Fourier transform infrared spectrometry,” Applied Spectroscopy, 2003, 57(11): 1432–1441.

    ADS  Article  Google Scholar 

  8. [8]

    J. M. Garrigues, A. Perez-Ponce, S. Garrigues, and M. D. L. Guardia, “Direct determination of ethanol and methanol in liquid samples by means of vapor phase-Fourier transform infrared spectrometry,” Vibrational Spectroscopy, 1997, 15(2): 219–228.

    Article  Google Scholar 

  9. [9]

    A. Nadezhdinskii, A. Berezin, Y. Bugoslavsky, O. Ershov, and V. Kutnyak, “Application of near-IR diode lasers for measurement of ethanol vapor,” Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, 1999, 55(10): 2049–2055.

    ADS  Article  Google Scholar 

  10. [10]

    S. Jie, Q. J. Tang, C. Cheng, and Z. Y. Li, “Remote detection of alcohol concentration in vehicle based on TDLAS,” in Proceeding of Symposium on Photonics & Optoelectronic, Chengdu, China, 2010, pp. 1–3.

    Google Scholar 

  11. [11]

    H. Geng, J. G. Liu, Y. J. Zhang, R. F. Kan, Z. Y. Xu, L. Yao, et al., “Ethanol vapor measurement based on tunable diode laser absorption spectroscopy,” Acta Physica Sinica, 2014, 63(4): 114–119.

    Google Scholar 

  12. [12]

    J. Hodgkinson and R. P. Tatam, “Optical gas sensing: a review,” Measurement Science and Technology, 2103, 24(1): 012004-1–012004-95.

    Article  Google Scholar 

  13. [13]

    C. J. Wang and P. Sahay, “Breath analysis using laser spectroscopic techniques: breath biomarkers, spectral fingerprints, and detection limits,” Sensors, 2009, 9(10): 8230–8262.

    Article  Google Scholar 

  14. [14]

    P. Kluczynski, S. Lundqvist, S. Belahsene, Y. Rouillard, L. Nähle, M. Fischer, et al., “Detection of propane using tunable diode laser spectroscopy at 3.37 μm,” Applied Physics B, 2012, 108(1): 183–188.

    Article  Google Scholar 

  15. [15]

    L. F. Zhang, F. Wang, L. B. Yu, J. H. Yan, and K. F. Cen, “The research for trace ammonia escape monitoring system based on tunable diode laser absorption spectroscopy,” Spectroscopy and Spectral Analysis, 2015, 35(6): 1639–1642.

    Google Scholar 

  16. [16]

    A. K. Andersson, J. Kron, M. Castren, A. M. Athlin, B. Hok, and L. Wiklund, “Assessment of the breath alcohol concentration in emergency care patients with different level of consciousness,” Scandinavian Journal of Trauma Resuscitation & Emergency Medicine, 2015, 23(1): 1–9.

    Article  Google Scholar 

  17. [17]

    F. Capasso, “High-performance midinfrared quantum cascade lasers,” Optical Engineering, 2010, 49(11): 111102-1–111102-9.

    ADS  Article  Google Scholar 

  18. [18]

    I. Vurgaftman, M. Kim, C. S. Kim, W. W. Bewley, C. L. Canedy, J. R. Lindle, et al., “Challenges for mid-IR interband cascade lasers,” Novel in-Plane Semiconductor Lasers Ix, 2010, 7616(1): 82–88.

    Google Scholar 

  19. [19]

    C. G. Li, L. Dong, C. T. Zheng, and F. K. Tittel, “Compact TDLAS based optical sensor for ppb-level ethane detection by use of a 3.34 μm room-temperature CW interband cascade laser,” Sensors and Actuators B-Chemical, 2016, 232: 188–194.

    Article  Google Scholar 

  20. [20]

    L. Dong, F. K. Tittel, C. G. Li, N. P. Sanchez, H. P. Wu, C. T. Zheng, et al., “Compact TDLAS based sensor design using interband cascade lasers for mid-IR trace gas sensing,” Optics Express, 2016, 24(6): 528–535.

    Article  Google Scholar 

  21. [21]

    J. Jagerska, B. Tuzson, H. Looser, A. Bismuto, J. Faist, H. Prinz, et al., “Highly sensitive and fast detection of propane-butane using a 3 μm quantum cascade laser,” Applied Optics, 2013, 52(19): 4613–4619.

    ADS  Article  Google Scholar 

  22. [22]

    P. Geiser, “New opportunities in mid-infrared emission control,” Sensors (Basel), 2015, 15(9): 22724–22736.

    Article  Google Scholar 

  23. [23]

    J. Reid and D. Labrie, “2nd-harmonic detection with tunable diode-lasers-comparison of experiment and theory,” Applied Physics B–Photophysics and Laser Chemistry, 1981, 26(3): 203–210.

    ADS  Article  Google Scholar 

  24. [24]

    T. R. S. Hayden and G. B. Rieker, “Large amplitude wavelength modulation spectroscopy for sensitive measurements of broad absorbers,” Optics Express, 2016, 24(24): 27910–27921.

    ADS  Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the State Commission of Science Technology of China (Grant No. 2017YFB0405304).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Liang Xie.

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gao, H., Xie, L., Gong, P. et al. Detection of Ethanol Using a Tunable Interband Cascade Laser at 3.345 μm. Photonic Sens 8, 303–309 (2018). https://doi.org/10.1007/s13320-018-0471-3

Download citation

Keywords

  • Ethanol sensor
  • interband cascade lasers
  • wavelength modulation spectroscopy