Advertisement

Photonic Sensors

, Volume 8, Issue 1, pp 29–33 | Cite as

Sensitivity enhancement of nonlinear waveguide sensors with conducting graphene layer: TE mode

  • Hala J. El-Khozondar
  • Mohammed M. Shabat
  • Rana Khlifa
Open Access
Regular
  • 189 Downloads

Abstract

We propose a three-layer waveguide sensor. The proposed sensor consists of a graphene thin layer with constant conductivity at the interface between air and dielectric media with thickness d sitting above a nonlinear layer. The sensitivity of the sensor is derived from the dispersion equation. The sensitivity is calculated for both TE0 and TE1. Results show that the sensitivity of the proposed sensor depends on the conductivity of the graphene layer, the angular frequency, and the thickness of the dielectric layer.

Keywords

Graphene nonlinear Kerr like materials optical sensor waveguide sensor 

References

  1. [1]
    R. A. Potyrailo, S. E. Hobbs, and G. M. Hieftje, “Near-ultraviolet evanescent-wave absorption sensor based on a multimode optical fiber,” Analytical Chemistry, 1998, 70(8): 1639–1645.CrossRefGoogle Scholar
  2. [2]
    L. Xu, J. C. Fanuy, K. SSoni, and S. Q. Tao, “Optical fiber humidity sensor based on evanescent-wave scattering,” Optics Letters, 2004, 29(11): 1191–1193.ADSCrossRefGoogle Scholar
  3. [3]
    K. A. Remley and A. Weisshaar, “Design and analysis of a silicon-based antiresonant reflecting optical waveguide chemical sensors,” Optics Letters, 1996, 21(16): 1241–1243.ADSCrossRefGoogle Scholar
  4. [4]
    K. Tiefenthaler and W. Lukoz, “Sensitivity of grating couples as integrated optical chemical sensors,” Journal of the Optical Society of America B, 1989, 6(2): 209–220.ADSCrossRefGoogle Scholar
  5. [5]
    D. K. Qing and I. Yamaguchi, “Analysis of the sensitivity of optical waveguide chemical sensor for TM modes by the group-index method,” Journal of the Optical Society of America B, 1999, 16(9): 1359–1369.ADSCrossRefGoogle Scholar
  6. [6]
    W. Lukosz, “Integrated optical chemical and direct biochemical sensors,” Sensors & Actuators B: Chemical, 1995, 29(1): 37–50.CrossRefGoogle Scholar
  7. [7]
    R. E. Kunz, “Miniature integrated optical modules for chemical and biochemical sensing,” Sensors & Actuators B: Chemical, 1997, 38(1–3): 13–28.CrossRefGoogle Scholar
  8. [8]
    H. J. El-Khozondar, R. J. El-Khozondar, and S. Zouhdi, “Tunable MTMs consists of a single-walled nanotube thin film waveguide covered by nonlinear cladding,” Applied Physics A, 2015, 119(2): 451–453.CrossRefGoogle Scholar
  9. [9]
    H. J. El-Khozondar, M. Müller, R. J. El-Khozondar, M. M. Shabat, and A. W. Koch, “Sensitivity of double-negative metamaterial optical sensor,” International Journal of Pure and Applied Sciences and Technology, 2012, 11(2): 29–35.Google Scholar
  10. [10]
    R. J. El-Khozondar, H. J. El-Khozondar, and M. M. Shabat, “Surface wave propagation in ferroelectric/MTMS interface,” Integrated Ferroelectrics, 2011, 130(1): 50–57.CrossRefGoogle Scholar
  11. [11]
    H. J. El-Khozondar, R. J. El-Khozondar, and M. M. Shabat, “Temperature dependence of optical nonlinear waveguide sensor on thermal stress effect,” Islamic University Journal for Natural Science and Engineering, 2008, 16(2): 29–40.Google Scholar
  12. [12]
    H. J. El-Khozondar and R. J. El-Khozondar, “Temperature sensitivity enhancement of nonlinear optical channel waveguide sensors using thermal-stress effect,” Islamic University Journal for Natural Science and Engineering, 2008, 16(2): 15–27.Google Scholar
  13. [13]
    H. J. El-Khozondar, R. J. El-Khozondar, and M. M. Shabat, “Double-negative metamaterial optical waveguide behavior subjected to stress,” Islamic University Journal for Natural Science and Engineering, 2008, 16(1): 9–20.Google Scholar
  14. [14]
    H. J. El-Khozondar, R. J. El-Khozondar, M. M. Shabat, and A. W. Koch, “Stress effect on optical nonlinear waveguide sensor,” Journal of Optical Communications, 2007, 28(3): 175–179.ADSCrossRefGoogle Scholar
  15. [15]
    R. J. El-Khozondar, H. J. El-Khozondar, and M. M. Shabat, “Enhancing sensor sensitivity using graphene-MTM interface,” American Journal of Nano Research and Applications, 2017, 4(5): 43–46.Google Scholar
  16. [16]
    H. J. El-Khozondar, R. J. El-Khozondar, and M. M. Shabat, “Metamaterial-dielectric photonics crystal waveguide structure,” Optics, 2015, 4(1–2): 1–4.CrossRefGoogle Scholar
  17. [17]
    K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, et al., “Two-dimensional atomic crystals,” Proceedings of the National Academy of Sciences of USA, 2005, 102(30): 10451–10453.ADSCrossRefGoogle Scholar
  18. [18]
    L. Chen, Z. S. Ma, and C. Zhang, “Vertical absorption edge and temperature dependent resistivity in semihydrogenated graphene,” Applied Physics Letters, 2010, 96(2): 023107–1–023107–3.ADSCrossRefGoogle Scholar
  19. [19]
    C. G. Lee, X. D. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science, 2008, 312(5887): 385–388.ADSCrossRefGoogle Scholar
  20. [20]
    A. R. Wright, X. G. Xu, J. C. Cao, and C. Zhang, “Strong nonlinear optical response of graphene in the terahertz regime,” Applied Physics Letters, 2009, 95(7): 072101-1–072101-3.ADSCrossRefGoogle Scholar
  21. [21]
    F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, et al., “Detection of individual gas molecules adsorbed on graphene,” Nature Materials, 2007, 6(9): 652–655.ADSCrossRefGoogle Scholar
  22. [22]
    Y. V. Bludov, D. A. Smirnova, Y. S. Kivshar, N. M. R. Peres, and M. I. Vasilevskiy, “Nonlinear TE-polarized surface polaritons on graphene,” Physical Review B, 2014, 89: 035406-1–035406-6.ADSCrossRefGoogle Scholar
  23. [23]
    H. J. El-Khozondar, R. J. El-Khozondar, and M. M. Shabat, “Dispersion characteristics of graphene surface plasmon four layers waveguide,” IUG Journal of Natural Studies (IUGNES) Special Issue, 2017, 25(2): 263–266.Google Scholar
  24. [24]
    H. J. El-Khozondar, R. J. El-Khozondar, and M. M. Shabat, “Dispersion characteristics and sensitivity properties of graphene surface plasmon sensor,” Sensor Letters, 2017, 15(3): 249–252.CrossRefGoogle Scholar
  25. [25]
    R. J. El-Khozondar, H. J. El-Khozondar, and M. M. Shabat, “Enhancing sensor sensitivity using graphene-MTM interface,” American Journal of Nano Research and Applications, 2016, 4(5): 43–46.Google Scholar
  26. [26]
    Y. X. Wu, X. Y. Dai, Y. J. Xiang, and D. Y. Fan, “Nonlinear TE-polarized SPPs on a graphene cladded parallel plate waveguide,” Journal of Applied Physics, 2017, 121(10): 103103-1–103103–7.ADSCrossRefGoogle Scholar
  27. [27]
    Y. Wu, L. Jiang, H. Xu, X. Dai, Y. Xiang, and D. Fan, “Hybrid nonlinear surface-phonon-plasmonpolaritons at the interface of nonlinear medium and graphene-covered hexagonal boron nitride crystal,” Optics Express, 2016, 24(3): 2109–2124.ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Hala J. El-Khozondar
    • 1
  • Mohammed M. Shabat
    • 2
  • Rana Khlifa
    • 2
  1. 1.Electrical Engineering departmentIslamic University of GazaGazaPalestine
  2. 2.Physics departmentIslamic University of GazaGazaPalestine

Personalised recommendations