Photonic Sensors

, Volume 7, Issue 3, pp 217–225 | Cite as

A study on refractive index sensors based on optical micro-ring resonators

  • Georgios N. TsigaridasEmail author
Open Access


In this work, the behavior of refractive index sensors based on optical micro-ring resonators is studied in detail. Using a result of waveguide perturbation theory in combination with numerical simulations, the optimum design parameters of the system, maximizing the sensitivity of the sensor, are determined. It is found that, when optimally designed, the sensor can detect relative refractive index changes of the order of Δn/n≈3×10−4, assuming that the experimental setup can detect relative wavelength shifts of the order of Δλ/λ≈3×10−5. The behavior of the system as bio-sensor has also been examined. It is found that, when optimally designed, the system can detect refractive index changes of the order of Δn≈10−3 for a layer thickness of t=10 nm, and changes in the layer thickness of the order of λt≈0.24 nm, for a refractive index change of Δn=0.05.


Optical micro-ring resonators refractive index sensors bio-sensors nano-photonic sensors 


  1. [1]
    R. Q. Ji, L. Yang, L. Zhang, Y. H. Tian, J. F. Ding, H. T. Chen, et al., “Microring-resonator-based four-port optical router for photonic networks-on-chip,” Optics Express, 2011, 19(20): 18945–18955.ADSCrossRefGoogle Scholar
  2. [2]
    R. Q. Ji, J. Xu, and L. Yang, “Five-port optical router based on microring switches for photonic networks-on-chip,” IEEE Photonics Technology Letters, 2013, 25(5): 492–495.ADSCrossRefGoogle Scholar
  3. [3]
    T. Hu, H. Shao, L. Z. Yang, C. Xu, M. Yang, H. Yu, et al., “Four-port silicon multi-wavelength optical router for photonic networks-on-chip,” IEEE Photonics Technology Letters, 2013, 25(23): 2281–2284.ADSCrossRefGoogle Scholar
  4. [4]
    S. J. Emelett and R. Soref, “Design and simulation of silicon microring optical routing switches,” Journal of Lightwave Technology, 2005, 23(4): 1800–1807.ADSCrossRefGoogle Scholar
  5. [5]
    Q. Xu and M. Lipson, “All-optical logic based on silicon micro-ring resonators,” Optics Express, 2007, 15(3): 924–929.ADSCrossRefGoogle Scholar
  6. [6]
    V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, et al., “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photonics Technology Letters, 2002, 14(1): 74–76.ADSCrossRefGoogle Scholar
  7. [7]
    J. N. Xia, “Microring-resonator-based switch architectures for optical networks,” Ph.D. dissertation, Politecnico di Torino, Turin MA, 2014.Google Scholar
  8. [8]
    I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Optics Express, 2008, 16(2): 1020–1028.ADSCrossRefGoogle Scholar
  9. [9]
    M. Gabalis, D. Urbonas, and R. Petruskevicius, “A perforated microring resonator for optical sensing applications,” Journal of Optics, 2014, 16(10): 105003.ADSCrossRefGoogle Scholar
  10. [10]
    A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, et al., “Optical sensing of biomolecules using microring resonators,” IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12(1): 148–155.CrossRefGoogle Scholar
  11. [11]
    W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja, T. Claes, et al., “Silicon microring resonators,” Laser & Photonics Reviews, 2015, 6(1): 47–73.CrossRefGoogle Scholar
  12. [12]
    J. M. Jin, The finite element method in electromagnetics. Piscataway, U.S.: Wiley, 2014.zbMATHGoogle Scholar
  13. [13]
    A. W. Snyder and J. D. Love, Optical waveguide theory. New York, U.S.: Springer US, 1983, pp. 1–37.Google Scholar
  14. [14]
    K. B. Gylfason, C. F. Carlborg, A. Kazmierczak, F. Dortu, H. Sohlstom, L. Vivien, et al., “On-chip temperature compensation in an integrated slot-waveguide ring resonator refractive index sensor array,” Optics Express, 2010, 18(4): 3226–3237.ADSCrossRefGoogle Scholar
  15. [15]
    V. Raghunathan, W. N. Ye, J. J. Hu, T. Izuhara, J. Michel, and L. Kimerling, “Athermal operation of silicon waveguides: spectral, second order and footprint dependencies,” Optics Express, 2010, 18(17): 17631–17639.ADSCrossRefGoogle Scholar
  16. [16]
    G. P. Agrawal, Nonlinear Fiber Optics, Pittsburgh: Academic Press, 2001, pp. 1–61.Google Scholar
  17. [17]
    Optical constants for a variety of materials. Available online: Scholar
  18. [18]
    M. Consales, M. Pisco, and A. Cusano, “Lab-on-fiber technology: a new avenue for optical nanosensors,” Photonic Sensors, 2012, 2(4): 289–315.ADSCrossRefGoogle Scholar
  19. [19]
    S. Olyaee, S. Najafgholinezhad, and H. Alipour- Banaei, “Four-channel label-free photonic crystal biosensor using nanocavity resonators,” Photonic Sensors, 2013, 3(3): 231–236.ADSCrossRefGoogle Scholar
  20. [20]
    M. Nejadebrahimy, L. Halimi, and H. Alipour- Banaei, “Design and simulation of ultrasensitive nano-biosensor based on OFPC,” Photonic Sensors, 2015, 5(1): 43–19.ADSCrossRefGoogle Scholar
  21. [21]
    S. Robinson and N. Dhanlaksmi, “Photonic crystal based biosensor for the detection of glucose concentration in urine,” Photonic Sensors, 2017, 7(1): 11–19.ADSCrossRefGoogle Scholar
  22. [22]
    X. N. Han, X. Y. Han, Y. H. Shao, Z. L. Wu, Y. X. Liang, J. Teng, et al., “Polymer integrated waveguide optical biosensor by using spectral splitting effect,” Photonic Sensors, 2017, 7(2): 131–139.ADSCrossRefGoogle Scholar
  23. [23]
    H. Heng and R. Wang, “Electromagnetic resonant properties of metal-dielectric-metal (MDM) cylindrical microcavities,” Photonic Sensors, 2017, 7(2): 148–156.ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of Physics, School of Applied Mathematical and Physical SciencesNational Technical University of Athens, Zografou CampusZografou, AthensGreece

Personalised recommendations