Photonic Sensors

, Volume 7, Issue 3, pp 234–245 | Cite as

Design and optimization of photonic crystal fiber based sensor for gas condensate and air pollution monitoring

  • Md. Ibadul Islam
  • Kawsar Ahmed
  • Shuvo Sen
  • Sawrab Chowdhury
  • Bikash Kumar Paul
  • Md. Shadidul Islam
  • Mohammad Badrul Alam Miah
  • Sayed Asaduzzaman
Open Access


In this paper, a hexagonal shape photonic crystal fiber (H-PCF) has been proposed as a gas sensor of which both micro-structured core and cladding are organized by circular air cavities. The reported H-PCF has a single layer circular core which is surrounded by a five-layer hexagonal cladding. The overall pretending process of the H-PCF is completed by using a full vectorial finite element method (FEM) with perfectly matched layer (PML) boundary condition. All geometrical parameters like diameters and pitches of both core and cladding regions have fluctuated with an optimized structure. After completing the numerical analysis, it is clearly visualized that the proposed H-PCF exhibits high sensitivity with low confinement loss. The investigated results reveal the relative sensitivity of 56.65% and confinement loss of 2.31×10-5 dB/m at the 1.33-μm wavelength. Moreover, effective area, nonlinearity, and V-parameter of the suggested PCF are also briefly described.


Relative sensitivity confinement loss gas sensor effective area nonlinearity and photonic crystal fiber 


  1. [1]
    H. J. Kim, O. Kown, S. B. Lee, and Y. Han, “Measurement of temperature and refractive index based on surface long-period gratings deposited onto a d-shaped photonic crystal fiber,” Applied Physics B: Chemical, 2010, 102(1): 81–85.ADSCrossRefGoogle Scholar
  2. [2]
    F. Yu, Z. P. Wang, W. H. Yang, and C. Y. Lv, “Characteristics of highly Birefringent Photonic crystal fiber with defected core and equilateral pentagon architecture,” Advances in OptoElectronics, 2016, 2016(6): 1–8.CrossRefGoogle Scholar
  3. [3]
    E. C. Mägi, P. Steinvurzel, and B. J. Eggleton, “Tapered photonic crystal fibers,” Optics Express, 2004, 12(5): 776.ADSCrossRefGoogle Scholar
  4. [4]
    S. L. Mousavi and M. Sabaeian, “Thermal stress-induced depolarization loss in conventional and panda-shaped photonic crystal fiber lasers,” Brazilian Journal of Physics, 2016, 46(5): 481–488.ADSCrossRefGoogle Scholar
  5. [5]
    S. H. Kim and G. R. Yi, “Colloidal photonic crystals for sensor applications,” Photonic Materials for Sensing, Biosensing and Display Devices, 2016, 229: 51–78.CrossRefGoogle Scholar
  6. [6]
    H. P. Gong, M. L. Xiong, Z. H. Qian, C. L. Zhao, and X. Y. Dong, “Simultaneous measurement of curvature and temperature based on Mach-Zehnder interferometer comprising core-offset and sphericalshape structures,” IEEE Photonics Journal, 2016, 8(1): 1–9.CrossRefGoogle Scholar
  7. [7]
    H. L. Bao, K. Nielsen, H. K. Rasmussen, P. U. Jepsen, and O. Bang, “Fabrication and characterization of porous-core honeycomb bandgap THz fibers,” Optics Express, 2012, 20(28): 29507–29517.ADSCrossRefGoogle Scholar
  8. [8]
    M. I. Islam, M. Khatun, S. Sen, K. Ahmed, and S. Asaduzzaman, “Spiral photonic crystal fiber for gas sensing application,” in Proceeding of IEEE 9th International Conference on Electrical and Computer Engineering, Dhaka, Bangladesh, 2016, pp. 20–22.Google Scholar
  9. [9]
    J. Han, S. Y. Li, and T. Zhang, “Design on a novel hybrid-core photonic crystal fiber with large birefringence and high nonlinearity,” Optical and Quantum Electronics, 2016, 48(371): 1–11.Google Scholar
  10. [10]
    B. K. Paul, K. Ahmed, S. Asaduzzaman, and M. S. Islam, “Folded cladding porous shaped photonic crystal fiber with high sensitivity in optical sensing applications: design and analysis,” Sensing and Bio-Sensing Research, 2017, 12(1): 36–42.CrossRefGoogle Scholar
  11. [11]
    W. C. Cai, E. Liu, B. Feng, H. F. Liu, Z. M. Wang, W. Xiao, et al., “Dispersion properties of a photonic quasi-crystal fiber with double cladding air holes,” Optik–International Journal for Light and Electron Optics, 2016, 127(10): 4438–4442.CrossRefGoogle Scholar
  12. [12]
    Z. L. Liu, J. An, J. W. Xing, and H. L. Du, “Polarization rotator based on liquid crystal infiltrated tellurite photonic crystal fiber,” Optik-International Journal for Light and Electron Optics, 2016, 127(10): 4391–4395.CrossRefGoogle Scholar
  13. [13]
    A. Argyros, “Microstructures in polymer fibers for optical fibers, THz waveguides, and fiber-based metamaterials,” ISRN Optics, 2013, 2013(7): 1–22.CrossRefGoogle Scholar
  14. [14]
    S. Asaduzzaman and K. Ahmed, “Proposal of a gas sensor with high sensitivity, birefringence and nonlinearity for air pollution monitoring,” Sensing and Bio-Sensing Research, 2016, 10: 20–26.CrossRefGoogle Scholar
  15. [15]
    D. Q. Yang, W. Yuan, and Y. F. Ji, “Nanoparticle detection using fano-resonance photonic crystal on optical fiber-tip,” SPIE, 2016, 10158: 1015811–1015818.Google Scholar
  16. [16]
    S. Rota-Rodrigo, A. Lopez-Aldaba, R. A. Perez-Herrera, M. D. L. Bautista, O. Esteban, and M. Lopez-Amo, “Simultaneous measurement of humidity and vibration based on a microwire sensor system using fast Fourier transform technique,” Journal of Lightwave Technology, 2016, 34(19): 4525–4530.ADSCrossRefGoogle Scholar
  17. [17]
    J. D. Hood, A. Goban, A. Asenjo-Garcia, M. Lu, S. P. Yu, D. E. Chang, et al., “Atom-atom interactions around the band edge of a photonic crystal waveguide,” Proceedings of the National Academy of Sciences, 2016, 113(38): 10507–10512.ADSCrossRefGoogle Scholar
  18. [18]
    X. H. Liu, M. S. Jiang, Q. M. Sui, S. Y. Luo, and X. Y. Geng, “Optical fiber Fabry-Perot interferometer for microorganism growth detection,” Optical Fiber Technology, 2016, 30: 32–37.ADSCrossRefGoogle Scholar
  19. [19]
    E. Brzozowska, M. Koba, M. Smietana, S. Gorska, M. Janik, A. Gamian, et al., “Label-free gram-negative bacteria detection using bacteriophage-adhesin-coated long-period gratings,” Biomedical Optics Express, 2016, 7(3): 829.CrossRefGoogle Scholar
  20. [20]
    Z. Yang, M. L. Liu, M. Shao, and Y. J. Ji, “Research on leakage detection and analysis of leakage point in the gas pipeline system,” Open Journal of Safety Science and Technology, 2011, 01(03): 94–100.CrossRefGoogle Scholar
  21. [21]
    M. F. H. Arif, S. Asaduzzaman, M. J. H. Biddut, and K. Ahmed, “Design and optimization of highly sensitive photonic crystal fiber with low confinement loss for ethanol detection,” International Journal of Technology, 2016, 6: 1068–1076.CrossRefGoogle Scholar
  22. [22]
    K. Ahmed and M. Morshed, “Design and numerical analysis of microstructured-core octagonal photonic crystal fiber for sensing applications,” Sensing and Bio-Sensing Research, 2016, 7(1): 1–6.CrossRefGoogle Scholar
  23. [23]
    F. Du, Y. Q. Lu, and S. T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Applied Physics Letters, 2004, 85(12): 2181.ADSCrossRefGoogle Scholar
  24. [24]
    A. A. Rifat, R. Ahmed, A. K. Yetisen, H. Butt, A. Sabouri, G. A. Mahdiraji, et al., “Photonic crystal fiber based plasmonic sensors,” Sensors and Actuators B: Chemical, 2017, 243: 311–325.CrossRefGoogle Scholar
  25. [25]
    R. Zeltner, D. S. Bykov, S. Xie, T. G. Euser, and P. S. J. Russell, “Fluorescence-based remote irradiation sensor in liquid-filled hollow-core photonic crystal fiber,” Applied Physics Letters, 2016, 108(23): 231107.ADSCrossRefGoogle Scholar
  26. [26]
    S. H. Kassani, R. Khazaeinezhad, Y. Jung, J. Kobelke, and K. Oh, “Suspended ring-core photonic crystal fiber gas sensor with high sensitivity and fast response,” IEEE Photonics Journal, 2015, 7(1): 1–9.CrossRefGoogle Scholar
  27. [27]
    S. J. Zheng, M. Ghandehari, and J. P. Ou, “Photonic crystal fiber long-period grating absorption gas sensor based on a tunable erbium-doped fiber ring laser,” Sensors and Actuators B: Chemical, 2016, 223: 324–332.CrossRefGoogle Scholar
  28. [28]
    C. M. B. Cordeiro, M. A. Franco, G. Chesini, E. C. Barretto, R. Lwin, C. B. Cruz, et al., “Microstructured-core optical fibre for evanescent sensing applications,” Optics Express, 2006, 14(26): 13056.ADSCrossRefGoogle Scholar
  29. [29]
    Y. L. Hoo, W. Jin, C. Shi, H. L. Ho, D. N. Wang, and S. C. Ruan, “Design and modeling of a photonic crystal fiber gas sensor,” Applied Optics, 2003, 42(18): 3509.ADSCrossRefGoogle Scholar
  30. [30]
    M. Morshed, M. I. Hasan, and S. M. A. Razzak, “Enhancement of the sensitivity of gas sensor based on microstructure optical fiber,” Photonic Sensors, 2015, 5(4): 312–320.ADSCrossRefGoogle Scholar
  31. [31]
    Z. G. Zhi, F. D. Zhang, M. Zhang, and P. D. Ye, “Gas sensing properties of index-guided PCF with air-core,” Optics & Laser Technology, 2008, 40(1): 167–174.ADSCrossRefGoogle Scholar
  32. [32]
    S. Olyaee and A. Naraghi, “Design and optimization of index-guiding photonic crystal fiber gas sensor,” Photonic Sensors, 2013, 3(2): 131–136.ADSCrossRefGoogle Scholar
  33. [33]
    S. Olyaee, A. Naraghi, and V. Ahmadi, “High sensitivity evanescent-field gas sensor based on modified photonic crystal fiber for gas condensate and air pollution monitoring,” Optik–International Journal for Light and Electron Optics, 2014, 125(1): 596–600.CrossRefGoogle Scholar
  34. [34]
    S. Asaduzzaman, K. Ahmed, T. Bhuiyan, and M. F. H. Arif, “Design of simple structure gas sensor Based on hybrid photonic crystal fiber,” Cumhuriyet Science Journal, 2016, 37(3): 187–196.CrossRefGoogle Scholar
  35. [35]
    X. Yu, Y. Zhang, Y. C. Kwok, and P. Shum, “Highly sensitive photonic crystal fiber based absorption spectroscopy,” Sensors and Actuators: B Chemical, 2010, 145(1): 110–113.CrossRefGoogle Scholar
  36. [36]
    T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Measurement Science and Technology, 2001, 12(7): 854–858.ADSCrossRefGoogle Scholar
  37. [37]
    M. Morshed, S. Asaduzzaman, and K. Ahmed, “Proposal of simple gas sensor based on micro structure optical fiber,” in IEEE International Conference on Electrical Engineering and Information Communication Technology, Dhaka, Bangladesh, pp. 1–5, 2015.Google Scholar
  38. [38]
    J. W. Wang, C. Jiang, W. S. Hu, and M. Y. Gao, “Properties of index-guided PCF with air-core,” Optics & Laser Technology, 2007, 39(2): 317–321.ADSCrossRefGoogle Scholar
  39. [39]
    N. A. Mortensen, J. R. Folkenberg, M. D. Nielsen, and K. P. Hansen, “Modal cutoff and the V parameter in photonic crystal fibers,” Optics Letters, 2003, 28(20): 1879.ADSCrossRefGoogle Scholar
  40. [40]
    M. Morshed, M. F. H. Airf, S. Asaduzzaman, and K. Ahmed, “Design and characterization of photonic crystal fiber for sensing applications,” European Journal of Scientific Research, 2016, 11(12): 228–235.Google Scholar
  41. [41]
    S. Olyaee and F. Taghipour, “Doped-core octagonal Photonic crystal fiber with ultra-flattened nearly zero dispersion and low confinement loss in a wide wavelength range,” Fiber and Integrated Optics, 2012, 31(3): 178–185.ADSCrossRefGoogle Scholar
  42. [42]
    S. E. Kim, B. H. Kim, C. G. Lee, S. Lee, K. Oh, and C. S. Kee, “Elliptical defected core photonic crystal fiber with high birefringence and negative flattened dispersion,” Optics Express, 2012, 20(2): 1385.ADSCrossRefGoogle Scholar
  43. [43]
    P. Ma, N. F. Song, J. Jin, J. M. Song, and X. B. Xu, “Birefringence sensitivity to temperature of polarization maintaining photonic crystal fibers,” Optics & Laser Technology, 2012, 44(6): 1829–1833.ADSCrossRefGoogle Scholar
  44. [44]
    S. Sen, S. Chowdhury, K. Ahmed, and S. Asaduzzaman, “Design of a porous cored hexagonal photonic crystal fiber based optical sensor with high relative sensitivity for lower operating wavelength,” Photonic Sensors, 2017, 7(1): 55–65.ADSCrossRefGoogle Scholar
  45. [45]
    S. Asaduzzaman, K. Ahmed, and B. K. Paul, “Slotted-core photonic crystal fiber in gas-sensing application,” SPIE, 2016, 10025: 100250O1–100250O9.Google Scholar
  46. [46]
    M. Napierala, T. Nasilowski, E. Beres-Pawlik, F. Berghmans, J. Wojcik, and H. Thienpont, “Extremely large-mode-area photonic crystal fiber with low bending loss,” Optics express, 2010, 18(15): 15408–15418.ADSCrossRefGoogle Scholar
  47. [47]
    J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, “Photonic crystal fibers: a new class of optical waveguides,” Optical Fiber Technology, 1999, 5(3): 305–330.ADSCrossRefGoogle Scholar
  48. [48]
    M. N. Petrovich, A. Brakel, F. Poletti, K. Mukasa, E. Austin, V. Finazzi, et al., “Microstructured fibers for sensing applications,” SPIE, 2005, 6005: 60050E1–60050E15.Google Scholar
  49. [49]
    H. H. El, Y. Ouerdane, L. Bigot, G. Bouwmans, B. Capoen, A. Boukenter, et al., “Sol-gel derived ionic copper-doped microstructured optical fiber: a potential selective ultraviolet radiation dosimeter,” Optics Express, 2012, 20(28): 29751.ADSCrossRefGoogle Scholar
  50. [50]
    H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. Moore, K. Frampton, et al., “Bismuth glass holey fibers with high nonlinearity,” Optics Express, 2004, 12(21): 5082.ADSCrossRefGoogle Scholar
  51. [51]
    K. M. Kiang, K. Frampton, T. M. Monro, R. Moore, J. Tucknott, D. W. Hewak, et al., “Extruded single-mode non-silica glass holey optical fibers,” Electronics Letters, 2002, 38(12): 546–547.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Md. Ibadul Islam
    • 1
  • Kawsar Ahmed
    • 1
    • 2
  • Shuvo Sen
    • 1
  • Sawrab Chowdhury
    • 1
  • Bikash Kumar Paul
    • 1
    • 2
  • Md. Shadidul Islam
    • 1
  • Mohammad Badrul Alam Miah
    • 1
  • Sayed Asaduzzaman
    • 1
    • 2
    • 3
  1. 1.Department of Information and Communication Technology (ICT)Mawlana Bhashani Science and Technology UniversitySantosh, TangailBangladesh
  2. 2.Group of Bio-photomatiχTangailBangladesh
  3. 3.Department of Software Engineering (SWE)Daffodil International UniversitySukrabad, DhakaBangladesh

Personalised recommendations