Photonic Sensors

, Volume 7, Issue 2, pp 105–112 | Cite as

Numerical investigation into a surface plasmon resonance sensor based on optical fiber microring

  • Chunliu Zhao
  • Yanru Wang
  • Dongning Wang
  • Zhewen Ding
Open Access
Regular
  • 281 Downloads

Abstract

A reflective surface plasmon resonance (SPR) sensor based on optical fiber microring is proposed. In such a sensor, plasmons on the outer surface of the metallized channels containing analyte can be excited by a fundamental mode of a thin-core fiber (TCF). The refractive index (RI) sensing can be achieved as the surface plasmons are sensitive to changes in the refrective index of the analyte. Numerical simulation results show that the resonance spectrum shifts toward the shorter wavelength gradually when the analyte refractive index increases from 1.0 to 1.33, whereas it shifts toward the longer wavelength gradually when the analyte refractive index increases from 1.33 to 1.43, and there is a turning point at the refractive index value of 1.33. The highest sensitivity achieved is up to 2.30×103 nm/RIU near the refractive index value of 1.0. Such a compact sensor has potential in gaseous substance monitoring.

Keywords

Fiber optics surface plasmons sensors microstructure 

Notes

Acknowledgment

This work was supported by the Natural Science Foundation of Zhejiang Province China under Grant No.LY17F050010.

References

  1. [1]
    D. R. Tilley, “Surface polaritons: electromagnetic waves at surfaces and interfaces,” Journal of Modern Optics, 1983, 30(11): 1501–1506.Google Scholar
  2. [2]
    J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensors and Actuators B: Chemical, 1999, 54(1): 3–15.CrossRefGoogle Scholar
  3. [3]
    Y. Wang, S. Meng, Y. Liang, L. Li, and W. Peng, “Fiber-optic surface plasmon resonance sensor with multi-alternating metal layers for biological measurement,” Photonic Sensors, 2013, 3(3): 202–207.ADSCrossRefGoogle Scholar
  4. [4]
    C. Perrotton, R. J. Westerwaal, N. Javahiraly, M. Slaman, H. Schreuders, B. Dam, et al., “A reliable, sensitive and fast optical fiber hydrogen sensor based on surface plasmon resonance,” Optics Express, 2013, 21(1): 382–390.ADSCrossRefGoogle Scholar
  5. [5]
    S. K. Srivastava, R. Verma, and B. D. Gupta, “Surface plasmon resonance based fiber optic sensor for the detection of low water content in ethanol,” Sensors and Actuators B: Chemical, 2011, 153(1): 194–198.CrossRefGoogle Scholar
  6. [6]
    A. Nooke, U. Beck, A. Hertwig, A. Krause, H. Krüger, V. Lohse, et al., “On the application of gold based SPR sensors for the detection of hazardous gases,” Sensors and Actuators B: Chemical, 2010, 149(1): 194–198.CrossRefGoogle Scholar
  7. [7]
    M. Xue, Q. Jiang, C Zhang, and J. Lin, “A kind of biomolecular probe sensor based on TFBG surface plasma resonance,” Photonic Sensors, 2015, 5(2): 102–108.ADSCrossRefGoogle Scholar
  8. [8]
    J. Homola, J. Dostalek, S. Chen, A. Rasooly, S. Jiang, and S. S. Yee, “Spectral surface plasmon resonance biosensor for detection of staphylococcal enterotoxin B in milk,” International Journal of Food Microbiology, 2002, 75(1): 61–69.CrossRefGoogle Scholar
  9. [9]
    D. F. Santos, A. Guerreiro, and J. M. Baptista, “Numerical investigation of a refractive index SPR D-type optical fiber sensor using COMSOL Multiphysics,” Photonic Sensors, 2013, 3(1): 61–66.ADSCrossRefGoogle Scholar
  10. [10]
    H. Y. Lin, C. H. Huang, G. L. Cheng, N. K. Chen, and H. C. Chui, “Tapered optical fiber sensor based on localized surface plasmon resonance,” Optics Express, 2012, 20(19): 21693–21701.ADSCrossRefGoogle Scholar
  11. [11]
    L. C. C. Coelho, J. M. M. M. D Almeida, H. Moayyed, J. L. Santos, and D. Viegas, “Multiplexing of surface plasmon resonance sensing devices on etched single-mode fiber,” Journal of Lightwave Technology, 2015, 33(2): 432–438.ADSCrossRefGoogle Scholar
  12. [12]
    J. Zhu, L Qin, S. Song, J. Zhong, and S. Lin, “Design of a surface plasmon resonance sensor based on grating connection,” Photonic Sensors, 2015, 5(2): 159–165.ADSCrossRefGoogle Scholar
  13. [13]
    R. Verma, A. Sharma, and B. Gupta, “Modeling of tapered fiber-optic surface plasmon resonance sensor with enhanced sensitivity,” IEEE Photonics Technology Letters, 2007, 19(22): 1786–1788.ADSCrossRefGoogle Scholar
  14. [14]
    A. Jian, L. Den, S. Sang, Q. Duan, X. Zhang, and W. Zhang, “Surface plasmon resonance sensor based on an angled optical fiber,” IEEE Sensors Journal, 2014, 14(9): 3229–3235.CrossRefGoogle Scholar
  15. [15]
    A. Hassani and M. Skorobogatiy, “Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics,” Optics Express, 2006, 14(24): 11616–11621.ADSCrossRefGoogle Scholar
  16. [16]
    M. Hautakorpi, M. Mattinen, and H. Ludvigsen, “Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber,” Optics Express, 2008, 16(12): 8427–8432.ADSCrossRefGoogle Scholar
  17. [17]
    M. Erdmanis, D. Viegas, M. Hautakorpi, S. Novotny, J. L. Santos, and H. Ludvigsen, “Comprehensive numerical analysis of a surface-plasmon-resonance sensor based on an H-shaped optical fiber,” Optics Express, 2011, 19(15): 13980–13988.ADSCrossRefGoogle Scholar
  18. [18]
    X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan, et al., “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” Journal of Optics, 2009, 12(1): 74–77.Google Scholar
  19. [19]
    Y. Lu, C. J. Hao, B. Q. Wu, M. Musideke, L. C. Duan, W. Q. Wen, et al., “Surface plasmon resonance sensor based on polymer photonic crystal fibers with metal nanolayers,” Sensors, 2013, 13(1): 956–965.CrossRefGoogle Scholar
  20. [20]
    A. K. Mishra, S. K. Mishra, and B. D. Gupta, “Gas-clad two-way fiber optic SPR sensor: a novel approach for refractive index sensing,” Plasmonics, 2015, 10(5): 1071–1076.CrossRefGoogle Scholar
  21. [21]
    P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, et al., “Microstructured optical fibers as high-pressure microfluidic reactors,” Science, 2006, 311(5767): 1583–1586.ADSCrossRefGoogle Scholar
  22. [22]
    J. A. Harrington, “A review of IR transmitting, hollow waveguides,” Fiber & Integrated Optics, 2000, 19(3): 211–227.ADSCrossRefGoogle Scholar
  23. [23]
    N. Takeyasu, T. Tanaka, and S. Kawata, “Metal deposition deep into microstructure by electroless plating,” Japanese Journal of Applied Physics, 2005, 44(35): L1134–L1137.ADSCrossRefGoogle Scholar
  24. [24]
    Y. Zhu, M. Cheng, H. Wang, Y. Zhang, and J. Yang, “Design of a surface-plasmon-resonance sensor based on a microstructured optical fiber with annular-shaped holes,” Plasma Science and Technology, 2014, 16(9): 867–872.ADSCrossRefGoogle Scholar
  25. [25]
    A. Hassani and M. Skorobogatiy, “Design criteria for microstructured-optical-fiber based surface plasmon resonance sensors,” JOSA B, 2007, 24(6): 1423–1429.ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Chunliu Zhao
    • 1
  • Yanru Wang
    • 1
  • Dongning Wang
    • 1
  • Zhewen Ding
    • 1
  1. 1.Institute of Optoelectronic TechnologyChina Jiliang UniversityHangzhouChina

Personalised recommendations