Photonic Sensors

, Volume 5, Issue 3, pp 278–283 | Cite as

Large dynamic range SPR measurements using a ZnSe prism

  • John Canning
  • Jing Qian
  • Kevin Cook
Open Access


A large dynamic index measurement range (n = 1 to n = 1.7) using surface plasmon resonance (SPR) shifts was demonstrated with a ZnSe prism at 632.8 nm, limited by the available high index liquid hosts. In contrast to borosilicate based SPR measurements, where angular limitations restrict solvent use to water and require considerable care dealing with Fresnel reflections, the ZnSe approach allows SPR spectroscopies to be applied to a varied range of solvents. An uncertainty in angular resolution between 1.5° and 6°, depending on the solvent and SPR angle, was estimated. The refractive index change for a given glucose concentration in water was measured to be n = (0.114 ± 0.007) /%[C6H12O6]. Given the transmission properties of ZnSe, the processes can be readily extended into the mid infrared.


Plasmonics surface plasmons surface waves scattering spectroscopy metal optics 


  1. [1]
    R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Proceedings of the Physical Society of London, 1902, 18(1): 269–275.ADSCrossRefGoogle Scholar
  2. [2]
    B. Leidberg, C. Nylander, and I. Lunström, “Surface plasmon resonance for gas detection and biosensing,” Sensors and Actuators, 1983, 4: 299–304.CrossRefGoogle Scholar
  3. [3]
    R. P. H. Kooyman H. Kolkman, J. V. Gent, and J. Greves, “Surface plasmon resonance immunosensors: sensitivity considerations,” Analytica Chimica Acta, 1988, 213: 35–45.CrossRefGoogle Scholar
  4. [4]
    J. Homola, “Present and future of surface plasmon resonance biosensors,” Analytical and Bioanalytical Chemistry, 2003, 377(3): 528–539.CrossRefGoogle Scholar
  5. [5]
    H. J. M. Kreuwel, P. V. Lambeck, J. V. Gent, and T. J. A. Popma, “Surface plasmon dispersion and luminescence quenching applied to planar waveguide sensors for the measurement of chemical concentrations,” in Proc. SPIE, vol. 798, pp. 218–225, 1987.ADSCrossRefGoogle Scholar
  6. [6]
    R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sensors and Actuators B: Chemical, 1993, 12(3): 213–220.CrossRefGoogle Scholar
  7. [7]
    P. S. Vukusic, G. P. Bryan-Brown, and J. R. Sambles, “Surface plasmon resonance on gratings as a novel means for gas sensing,” Sensors and Actuators B: Chemical, 1992, 8(2): 155–160.CrossRefGoogle Scholar
  8. [8]
    J. Dostálek, J. Homola, and M. Miler, “Rich information format surface plasmon resonance biosensor based on array of diffraction gratings,” Sensors and Actuators B: Chemical, 2005, 107(1): 154–161.CrossRefGoogle Scholar
  9. [9]
    G. Ruffato and F. Romanato, “Grating-coupled surface plasmon resonance in conical mounting with polarization modulation,” Optics Letters, 2012, 37(13): 2718–2720.ADSCrossRefGoogle Scholar
  10. [10]
    J. Čtyroký Skalský, J. Homola and M. Skalskya, “Modelling of surface plasmon resonance waveguide sensor by complex mode expansion and propagation method,” Optical and Quantum Electronics, 1997, 29(2): 301–311.CrossRefGoogle Scholar
  11. [11]
    G. Nemova and R. Kashyap, “Fiber-Bragg-grating-assisted surface plasmon-polariton sensor,” Optics Letters, 2006, 31(14): 2118–2120.ADSCrossRefGoogle Scholar
  12. [12]
    Y. Y. Shevchenko and J. Albert, “Plasmon resonances in gold-coated tilted fiber Bragg gratings,” Optics Letters, 2007, 32(3): 211–213.ADSCrossRefGoogle Scholar
  13. [13]
    L. Y. Shao, Y. Shevchenko, and J. Albert, “Intrinsic temperature sensitivity of tilted fiber Bragg grating based surface plasmon resonance sensors,” Optics Express, 2010, 18(11): 11464–11471.ADSCrossRefGoogle Scholar
  14. [14]
    J. Canning, A. Karim, N. Tzoumis, Y. Tan, R. Patyk, and B. C. Gibson, “Near orthogonal launch of SPR modes in Au films,” Optics Letters, 2014, 39(17): 5038–5041.ADSCrossRefGoogle Scholar
  15. [15]
    E. Kretschmann, “Die Bestimmung optischer Konstanten von Metallen durch Anregung von Oberflächenplasmaschwingungen,” Zeitschrift für Physik, 1971, 241(4): 313–324.ADSCrossRefGoogle Scholar
  16. [16]
    See examples provided at
  17. [17]
    J. Canning, N. Tzoumis, J. Beattie, B. C. Gibson, and E. Ilagan, “Water on Au sputtered films,” Chemical Communications, 2014, 50(65): 9172–9175.CrossRefGoogle Scholar
  18. [18]
    Y. Wang, J. Pistora, M. Lesnak, J. Vlcek, and F. Stanek, “SPR approach for determination of temperature water refractive index alterations,” GeoScience Engineering, 2009, VLV(4): 53–59.Google Scholar
  19. [19]
    S. Herminjard, L. Sirigu, H. P. Herzig, E. Studemann, A. Crottini, J. P. Pellaux, et al., “Surface plasmon resonance sensor showing enhanced sensitivity for CO2 detection in the mid-infrared range,” Optics Express, 2009, 17(1): 293–303.ADSCrossRefGoogle Scholar
  20. [20]
    N. Goswami, A. Kar, and A. Saha, “Long range surface plasmon resonance enhanced electrooptically tunable Goos-Hänchen shift and Imbert-Fedorov shift in ZnSe prism,” Optics Communications, 2014, 330: 169–174.ADSCrossRefGoogle Scholar
  21. [21]
    V. Lirtsman, R. Ziblat, M. Golosovsky, D. Davidov, R. Pogreb, V. Sacks-Granek, et al., “Surface-plasmon resonance with infrared excitation: studies of phospholipid membrane growth,” Journal of Applied Physics, 2005, 98(9): 093506-1–093506-6.ADSCrossRefGoogle Scholar
  22. [22]
    J. Pan, J. Wei, J. Shen, S. Guo, Y. Sheng, X. Zhang, et al., “Green synthesis of surface plasmons photoluminescence enhancement ZnSe/Au nanocomposites and its bioimaging application,” Journal of Physics D: Applied Physics, 2014, 47(4): 045504–045509.ADSCrossRefGoogle Scholar
  23. [23]
    G. Shvets, “Plasmonics: metallic nanostructures and their optical properties,” in Proc. SPIE, vol. 5221, pp. 124, 2004.ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.interdisciplinary Photonics Laboratories, School of ChemistryThe University of SydneySydneyAustralia

Personalised recommendations