Abstract
Early detection of environmental disruption, unintentional or otherwise, is increasingly desired to ensure hazard minimization in many settings. Here, using a field-portable, smartphone fluorimeter to assess water quality based on the pH response of a designer probe, a map of pH of public tap water sites has been obtained. A custom designed Android application digitally processed and mapped the results utilizing the global positioning system (GPS) service of the smartphone. The map generated indicates no disruption in pH for all sites measured, and all the data are assessed to fall inside the upper limit of local government regulations, consistent with authority reported measurements. This implementation demonstrates a new security concept: network environmental forensics utilizing the potential of novel smartgrid analysis with wireless sensors for the detection of potential disruption to water quality at any point in the city. This concept is applicable across all smartgrid strategies within the next generation of the Internet of Things and can be extended on national and global scales to address a range of target analytes, both chemical and biological.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
Australian government’s National Health and Medical Research Council, “Australian drinking water guidelines 6,” National Water Quality Management Strategy, 2013, 2: 174.
Sydney Water, Quarterly Drinking Water Quality Report, 1 Jul. 2013 to 30 Sep. 2013, Sydney, Australian: Sydney Water. www.sydneywater.com.au, 2014.
P. H. Gleick, “Water and terrorism,” Water Policy, 2006, 8(6): 481–503.
J. S. Hall, J. G. Szabo, S. Panguluri, and G. Meiners, Distribution System Water Quality Monitoring: Sensor Technology Evaluation Methodology and Results, Cincinnati, U. S. A.: U. S. Environmental Protection Agency, 2009.
J. V. Capella, A. Bonastre, R. Ors, and M. Peris, “A wireless sensor network approach for distributed in-line chemical analysis of water,” Talanta, 2010, 80(5): 1789–1798.
M. A. Hossain, J. Canning, S. Ast, T. L. Yen, P. J. Rutledge, and A. Jamalipour, “A smartphone fluorometer - the lab-in-a-phone,” in Conference: Optical Sensor, pp. SeTh2C.1, 2014.
M. A. Hossain, J. Canning, S. Ast, P. J. Rutledge, T. L. Yen, and A. Jamalipour, “Lab-in-a-phone: smartphone-based portable fluorometer for pH measurements of environmental water,” IEEE Sensor Journal, 2015, 15(9): 5095–5102.
A. F. Coskun, J. Wong, D. Khodadadi, R. Nagi, A. Teya, and A. Ozcan, “A personalized food allergen testing platform on a cell phone,” Lab Chip, 2013, 13(4): 636–640.
Q. Wei, R. Nagi, K. Sadeghi, S. Feng, E. Yan, S. J. Ki, et al., “Detection and spatial mapping of mercury contamination in water samples using a smart-phone,” ACS Nano, 2014, 8(2): 1121–1129.
S. Sumriddetchkajorn, K. Chaitavon, and Y. Intaravanne, “Mobile-platform based colorimeter for monitoring chlorine concentration in water,” Sensors and Actuators B: Chemical, 2014, 191: 561–566 2014.
Y. Intaravannea, S. Sumriddetchkajorn, and J. Nukeawa, “Cell phone-based two-dimensional spectral analysis for banana ripeness estimation,” Sensors and Actuators B: Chemical, 2012, 168: 390–394.
A. García, M. M. Erenas, E. D. Marinetto, C. A. Abada, I. O. Paya, A. J. Palma, et al., “Mobile phone platform as portable chemical analyzer,” Sensors and Actuators B: Chemical, 2011, 156(1): 350–359, 2011.
Z. Iqbal and R. B. Bjorklund, “Assessment of a mobile phone for use as a spectroscopic analytical tool for foods and beverages,” International Journal of Food Science & Technology, 2011, 46(11): 2428–2436.
J. Canning, A. Lau, M. Naqshbandi, I. Petermann, and M. J. Crossley, “Measurement of fluorescence in a rhodamine-123 doped self-assembled’ giant’ meso-structured silica sphere using a smartphone as optical hardware,” Sensors, 2011, 11(7): 70551–7062.
Z. Iqbal and R. B. Bjorklund, “Colorimetric analysis of water and sand samples performed on a mobile phone,” Talanta, 2011, 84(4): 1118–1123.
T. S. Park and J. Y. Yoon, “Smartphone detection of escherichia coli from field water samples on paper microfluidics” IEEE Sensor Journal, 2015, 15(3): 1902–1907.
D. N. Breslauer, R. N. Maamari, N. A. Switz, W. A. Lam, and D. A. Fletcher, “Mobile phone based clinical microscopy for global health applications,” PLoS ONE, 2009, 4(7): e6320-1–e6320-7, 2009.
Z. J. Smith, K. Chu, A. R. Espenson, A. Gryshuk, M. Molinaro, D. M. Dwyre, et al., “Cell phone-based platform for biomedical device development and education applications,” PLoS ONE, 2011, 6(3): e17150-1–e17150-11.
Q. Wei, H. Qi, W. Luo, D. Tseng, S. J. Ki, Z. Wan, et al., “Fluorescent imaging of single nanoparticles and viruses on a smart phone,” ACS Nano, 2013, 7(10): 9147–9155.
A. Skandarajah, C. D. Reber, N. A. Switz, and D. A. Fletcher, “Quantitative imaging with a mobile phone microscope,” PLoS ONE, 2014, 9(5): e96906-1–e96906-12.
S. Lee and C. Yang, “A smartphone-based chip-scale microscope using ambient illumination,” Lab Chip, 2014, 14(16): 3056–3063.
H. C. Koydemir, Z. Gorocs, D. Tseng, B. Cortazar, S. Feng, R. Y. L. Chan, et al., “Rapid imaging, detection and quantification of Giardia lamblia cysts using mobile-phone based fluorescent microscopy and machine learning,” Lab Chip, 2015, 15(5): 1284–1293.
S. K. J. Ludwig, H. Zhu, S. Phillips, A. Shiledar, S. Feng, D. Tseng, et al., “Cellphone-based detection platform for rbST biomarker analysis in milk extracts using a microsphere fluorescence immunoassay,” Analytical and Bioanalytical Chemistry, 2014, 406(27): 6857–6866.
D. Gallegos, K. D. Long, H. Yu, P. P. Clark, Y. Lin, S. George, et al., “Label-free bio-detection using a smartphone,” Lab Chip, 2013, 13(11): 2124–2132.
H. Yu, Y. Tan, and B. T. Cunningham, “Smartphone fluorescence spectroscopy,” Analytical Chemistriy, 2014, 86(17): 8805–8813.
S. Dutta, A. Choudhury, and P. Nath, “Evanescent wave coupled spectroscopic sensing using smartphone,” IEEE Photonics Technology Letters, 2014, 26(6): 568–570.
M. A. Hossain, J. Canning, S. Ast, K. Cook, P. J. Rutledge, and A. Jamalipour, “Combined ‘dual’ absorption and fluorescent smartphone spectrometers,” Optics Letters, 2015, 40(8): 1737–1740.
A. W. Martinez, S. T, Phillips, E. Carrilho, S. W. Thomas, H. Sindi, and G. M. Whitesides, “Simple telemedicine for developing regions: camera phones and paper-based microfluidic devices for real-time, off-site diagnosis,” Analytical Chemistriy, 2008, 80(10): 3699–3707.
L. Shen, J. A. Hagan, and I. Papautsky, “Point-of-care colorimetric detection with a smartphone,” Lab Chip, 2012, 12(21): 4240–4243.
J. I. Hong and B. Y. Chang, Development of “Smartphone-based colorimetry for multi-analyte sensing arrays,” Lab Chip, 2014, 14(10): 1725–1732.
J. E. Smith, D. K. Griffin, J. K. Leny, J. A. Hagen, J. L. Chávez, and N. K. Loughnane, “Colorimetric detection with aptamer-gold nanoparticle conjugates coupled to an android based color analysis application for use in the field,” Talanta, 2014, 121: 247–255.
O. M. Mancuso and D. Erickson, “Cholesterol testing on a smartphone,” Lab Chip, 2014, 14(4): 759–763.
N. S. K. Gunda, S. Naicker, S. Shinde, S. Kimbahune, S. Shrivastava, and S. Mitra, “Mobile water kit (MWK): a smartphone compatible low-cost water monitoring system for rapid detection of total coliform and E. coli,” Analytical Methods, 2014, 6(16): 62361–6246.
D. Erickson, D. O’Dell, L. Jiang, V. Oncescu, A. Gumus, S. Lee, et al., “Smartphone technology can be transformative to the deployment of lab-on-chip diagnostics,” Lab Chip, 2014, 14(17): 3159–3164.
T. S. Park, C. Baynes, S. I. Cho, and J. Y. Yoon, “Paper microfluidics for red wine tasting,” RSC Advance, 2014, 4(46): 24356–24362.
International Telecommunication Union, Mobile-cellular subscriptions 2013, Available online: http://www.itu.int/en/ITU-D/Statistics, 2015.
B. Oram, Water Research Centre, Available online: http://www.water-research.net/index.php/ph-in-the-e nvironment.mm, 2014.
J. Buffle and G. Horvai, In Situ Monitoring of Aquatic Systems: Chemical Analysis and Speciation. New York, U. S. A.: Willey, 2000.
J. Canning, M. Naqshbandi, and M. J. Crossley, “Measurement of rhodamine B absorption in self-assembled silica microwires using a Tablet as the optical source,” in Proc. SPIE, vol. 8351, pp. 83512E-1–83512E -5, 2012.
S. Feng, R. Caire, B. Cortazar, M. Turan, A. Wong, and A. Ozcan “Immunochromatographic diagnostic test analysis using Google Glass,” ACS Nano, 2014, 8(3): 3069–3079.
B. Cortazar, H. C. Koydemir, D. Tseng, S. Feng, and A. Ozcan, “Quantification of plant chlorophyll content using google glass,” Lab Chip, 2015, 15(7): 1708–1716.
Sesorex, SAM-1 for iPhone, iPad and Android, Avialable online: http://www.sensorex.com/products /more/sam_1, 2015.
A. P. D. Silva, H. Q. N. Gunaratne, J. L. Habib-Jiwan, C. P. McCoy, T. E. Rice, and J. P. Soumillion, “New fluorescent model compounds for the study of photoinduced electron transfer: the influence of a molecular electric field in the excited state,” Angewandte Chemie International Edition, 1995, 34(16): 1728–1731.
Author information
Authors and Affiliations
Corresponding author
Additional information
This article is published with open access at Springerlink.com
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Hossain, M.A., Canning, J., Ast, S. et al. Early warning smartphone diagnostics for water security and analysis using real-time pH mapping. Photonic Sens 5, 289–297 (2015). https://doi.org/10.1007/s13320-015-0256-x
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13320-015-0256-x