Australian government’s National Health and Medical Research Council, “Australian drinking water guidelines 6,” National Water Quality Management Strategy, 2013, 2: 174.
Google Scholar
Sydney Water, Quarterly Drinking Water Quality Report, 1 Jul. 2013 to 30 Sep. 2013, Sydney, Australian: Sydney Water. www.sydneywater.com.au, 2014.
P. H. Gleick, “Water and terrorism,” Water Policy, 2006, 8(6): 481–503.
Article
Google Scholar
J. S. Hall, J. G. Szabo, S. Panguluri, and G. Meiners, Distribution System Water Quality Monitoring: Sensor Technology Evaluation Methodology and Results, Cincinnati, U. S. A.: U. S. Environmental Protection Agency, 2009.
Google Scholar
J. V. Capella, A. Bonastre, R. Ors, and M. Peris, “A wireless sensor network approach for distributed in-line chemical analysis of water,” Talanta, 2010, 80(5): 1789–1798.
Article
Google Scholar
M. A. Hossain, J. Canning, S. Ast, T. L. Yen, P. J. Rutledge, and A. Jamalipour, “A smartphone fluorometer - the lab-in-a-phone,” in Conference: Optical Sensor, pp. SeTh2C.1, 2014.
Google Scholar
M. A. Hossain, J. Canning, S. Ast, P. J. Rutledge, T. L. Yen, and A. Jamalipour, “Lab-in-a-phone: smartphone-based portable fluorometer for pH measurements of environmental water,” IEEE Sensor Journal, 2015, 15(9): 5095–5102.
Article
Google Scholar
A. F. Coskun, J. Wong, D. Khodadadi, R. Nagi, A. Teya, and A. Ozcan, “A personalized food allergen testing platform on a cell phone,” Lab Chip, 2013, 13(4): 636–640.
Article
Google Scholar
Q. Wei, R. Nagi, K. Sadeghi, S. Feng, E. Yan, S. J. Ki, et al., “Detection and spatial mapping of mercury contamination in water samples using a smart-phone,” ACS Nano, 2014, 8(2): 1121–1129.
Article
Google Scholar
S. Sumriddetchkajorn, K. Chaitavon, and Y. Intaravanne, “Mobile-platform based colorimeter for monitoring chlorine concentration in water,” Sensors and Actuators B: Chemical, 2014, 191: 561–566 2014.
Article
Google Scholar
Y. Intaravannea, S. Sumriddetchkajorn, and J. Nukeawa, “Cell phone-based two-dimensional spectral analysis for banana ripeness estimation,” Sensors and Actuators B: Chemical, 2012, 168: 390–394.
Article
Google Scholar
A. García, M. M. Erenas, E. D. Marinetto, C. A. Abada, I. O. Paya, A. J. Palma, et al., “Mobile phone platform as portable chemical analyzer,” Sensors and Actuators B: Chemical, 2011, 156(1): 350–359, 2011.
Article
Google Scholar
Z. Iqbal and R. B. Bjorklund, “Assessment of a mobile phone for use as a spectroscopic analytical tool for foods and beverages,” International Journal of Food Science & Technology, 2011, 46(11): 2428–2436.
Article
Google Scholar
J. Canning, A. Lau, M. Naqshbandi, I. Petermann, and M. J. Crossley, “Measurement of fluorescence in a rhodamine-123 doped self-assembled’ giant’ meso-structured silica sphere using a smartphone as optical hardware,” Sensors, 2011, 11(7): 70551–7062.
Google Scholar
Z. Iqbal and R. B. Bjorklund, “Colorimetric analysis of water and sand samples performed on a mobile phone,” Talanta, 2011, 84(4): 1118–1123.
Article
Google Scholar
T. S. Park and J. Y. Yoon, “Smartphone detection of escherichia coli from field water samples on paper microfluidics” IEEE Sensor Journal, 2015, 15(3): 1902–1907.
MathSciNet
Article
Google Scholar
D. N. Breslauer, R. N. Maamari, N. A. Switz, W. A. Lam, and D. A. Fletcher, “Mobile phone based clinical microscopy for global health applications,” PLoS ONE, 2009, 4(7): e6320-1–e6320-7, 2009.
Z. J. Smith, K. Chu, A. R. Espenson, A. Gryshuk, M. Molinaro, D. M. Dwyre, et al., “Cell phone-based platform for biomedical device development and education applications,” PLoS ONE, 2011, 6(3): e17150-1–e17150-11.
Q. Wei, H. Qi, W. Luo, D. Tseng, S. J. Ki, Z. Wan, et al., “Fluorescent imaging of single nanoparticles and viruses on a smart phone,” ACS Nano, 2013, 7(10): 9147–9155.
Article
Google Scholar
A. Skandarajah, C. D. Reber, N. A. Switz, and D. A. Fletcher, “Quantitative imaging with a mobile phone microscope,” PLoS ONE, 2014, 9(5): e96906-1–e96906-12.
S. Lee and C. Yang, “A smartphone-based chip-scale microscope using ambient illumination,” Lab Chip, 2014, 14(16): 3056–3063.
Article
Google Scholar
H. C. Koydemir, Z. Gorocs, D. Tseng, B. Cortazar, S. Feng, R. Y. L. Chan, et al., “Rapid imaging, detection and quantification of Giardia lamblia cysts using mobile-phone based fluorescent microscopy and machine learning,” Lab Chip, 2015, 15(5): 1284–1293.
Article
Google Scholar
S. K. J. Ludwig, H. Zhu, S. Phillips, A. Shiledar, S. Feng, D. Tseng, et al., “Cellphone-based detection platform for rbST biomarker analysis in milk extracts using a microsphere fluorescence immunoassay,” Analytical and Bioanalytical Chemistry, 2014, 406(27): 6857–6866.
Article
Google Scholar
D. Gallegos, K. D. Long, H. Yu, P. P. Clark, Y. Lin, S. George, et al., “Label-free bio-detection using a smartphone,” Lab Chip, 2013, 13(11): 2124–2132.
Article
Google Scholar
H. Yu, Y. Tan, and B. T. Cunningham, “Smartphone fluorescence spectroscopy,” Analytical Chemistriy, 2014, 86(17): 8805–8813.
Article
Google Scholar
S. Dutta, A. Choudhury, and P. Nath, “Evanescent wave coupled spectroscopic sensing using smartphone,” IEEE Photonics Technology Letters, 2014, 26(6): 568–570.
Article
ADS
Google Scholar
M. A. Hossain, J. Canning, S. Ast, K. Cook, P. J. Rutledge, and A. Jamalipour, “Combined ‘dual’ absorption and fluorescent smartphone spectrometers,” Optics Letters, 2015, 40(8): 1737–1740.
Article
ADS
Google Scholar
A. W. Martinez, S. T, Phillips, E. Carrilho, S. W. Thomas, H. Sindi, and G. M. Whitesides, “Simple telemedicine for developing regions: camera phones and paper-based microfluidic devices for real-time, off-site diagnosis,” Analytical Chemistriy, 2008, 80(10): 3699–3707.
Article
Google Scholar
L. Shen, J. A. Hagan, and I. Papautsky, “Point-of-care colorimetric detection with a smartphone,” Lab Chip, 2012, 12(21): 4240–4243.
Article
Google Scholar
J. I. Hong and B. Y. Chang, Development of “Smartphone-based colorimetry for multi-analyte sensing arrays,” Lab Chip, 2014, 14(10): 1725–1732.
Article
Google Scholar
J. E. Smith, D. K. Griffin, J. K. Leny, J. A. Hagen, J. L. Chávez, and N. K. Loughnane, “Colorimetric detection with aptamer-gold nanoparticle conjugates coupled to an android based color analysis application for use in the field,” Talanta, 2014, 121: 247–255.
Article
Google Scholar
O. M. Mancuso and D. Erickson, “Cholesterol testing on a smartphone,” Lab Chip, 2014, 14(4): 759–763.
Article
Google Scholar
N. S. K. Gunda, S. Naicker, S. Shinde, S. Kimbahune, S. Shrivastava, and S. Mitra, “Mobile water kit (MWK): a smartphone compatible low-cost water monitoring system for rapid detection of total coliform and E. coli,” Analytical Methods, 2014, 6(16): 62361–6246.
Google Scholar
D. Erickson, D. O’Dell, L. Jiang, V. Oncescu, A. Gumus, S. Lee, et al., “Smartphone technology can be transformative to the deployment of lab-on-chip diagnostics,” Lab Chip, 2014, 14(17): 3159–3164.
Article
Google Scholar
T. S. Park, C. Baynes, S. I. Cho, and J. Y. Yoon, “Paper microfluidics for red wine tasting,” RSC Advance, 2014, 4(46): 24356–24362.
Article
Google Scholar
International Telecommunication Union, Mobile-cellular subscriptions 2013, Available online: http://www.itu.int/en/ITU-D/Statistics, 2015.
B. Oram, Water Research Centre, Available online: http://www.water-research.net/index.php/ph-in-the-e nvironment.mm, 2014.
Google Scholar
J. Buffle and G. Horvai, In Situ Monitoring of Aquatic Systems: Chemical Analysis and Speciation. New York, U. S. A.: Willey, 2000.
Google Scholar
J. Canning, M. Naqshbandi, and M. J. Crossley, “Measurement of rhodamine B absorption in self-assembled silica microwires using a Tablet as the optical source,” in Proc. SPIE, vol. 8351, pp. 83512E-1–83512E -5, 2012.
S. Feng, R. Caire, B. Cortazar, M. Turan, A. Wong, and A. Ozcan “Immunochromatographic diagnostic test analysis using Google Glass,” ACS Nano, 2014, 8(3): 3069–3079.
Article
Google Scholar
B. Cortazar, H. C. Koydemir, D. Tseng, S. Feng, and A. Ozcan, “Quantification of plant chlorophyll content using google glass,” Lab Chip, 2015, 15(7): 1708–1716.
Article
Google Scholar
Sesorex, SAM-1 for iPhone, iPad and Android, Avialable online: http://www.sensorex.com/products /more/sam_1, 2015.
A. P. D. Silva, H. Q. N. Gunaratne, J. L. Habib-Jiwan, C. P. McCoy, T. E. Rice, and J. P. Soumillion, “New fluorescent model compounds for the study of photoinduced electron transfer: the influence of a molecular electric field in the excited state,” Angewandte Chemie International Edition, 1995, 34(16): 1728–1731.
Article
Google Scholar