Skip to main content

Early warning smartphone diagnostics for water security and analysis using real-time pH mapping

Abstract

Early detection of environmental disruption, unintentional or otherwise, is increasingly desired to ensure hazard minimization in many settings. Here, using a field-portable, smartphone fluorimeter to assess water quality based on the pH response of a designer probe, a map of pH of public tap water sites has been obtained. A custom designed Android application digitally processed and mapped the results utilizing the global positioning system (GPS) service of the smartphone. The map generated indicates no disruption in pH for all sites measured, and all the data are assessed to fall inside the upper limit of local government regulations, consistent with authority reported measurements. This implementation demonstrates a new security concept: network environmental forensics utilizing the potential of novel smartgrid analysis with wireless sensors for the detection of potential disruption to water quality at any point in the city. This concept is applicable across all smartgrid strategies within the next generation of the Internet of Things and can be extended on national and global scales to address a range of target analytes, both chemical and biological.

References

  1. Australian government’s National Health and Medical Research Council, “Australian drinking water guidelines 6,” National Water Quality Management Strategy, 2013, 2: 174.

    Google Scholar 

  2. Sydney Water, Quarterly Drinking Water Quality Report, 1 Jul. 2013 to 30 Sep. 2013, Sydney, Australian: Sydney Water. www.sydneywater.com.au, 2014.

  3. P. H. Gleick, “Water and terrorism,” Water Policy, 2006, 8(6): 481–503.

    Article  Google Scholar 

  4. J. S. Hall, J. G. Szabo, S. Panguluri, and G. Meiners, Distribution System Water Quality Monitoring: Sensor Technology Evaluation Methodology and Results, Cincinnati, U. S. A.: U. S. Environmental Protection Agency, 2009.

    Google Scholar 

  5. J. V. Capella, A. Bonastre, R. Ors, and M. Peris, “A wireless sensor network approach for distributed in-line chemical analysis of water,” Talanta, 2010, 80(5): 1789–1798.

    Article  Google Scholar 

  6. M. A. Hossain, J. Canning, S. Ast, T. L. Yen, P. J. Rutledge, and A. Jamalipour, “A smartphone fluorometer - the lab-in-a-phone,” in Conference: Optical Sensor, pp. SeTh2C.1, 2014.

    Google Scholar 

  7. M. A. Hossain, J. Canning, S. Ast, P. J. Rutledge, T. L. Yen, and A. Jamalipour, “Lab-in-a-phone: smartphone-based portable fluorometer for pH measurements of environmental water,” IEEE Sensor Journal, 2015, 15(9): 5095–5102.

    Article  Google Scholar 

  8. A. F. Coskun, J. Wong, D. Khodadadi, R. Nagi, A. Teya, and A. Ozcan, “A personalized food allergen testing platform on a cell phone,” Lab Chip, 2013, 13(4): 636–640.

    Article  Google Scholar 

  9. Q. Wei, R. Nagi, K. Sadeghi, S. Feng, E. Yan, S. J. Ki, et al., “Detection and spatial mapping of mercury contamination in water samples using a smart-phone,” ACS Nano, 2014, 8(2): 1121–1129.

    Article  Google Scholar 

  10. S. Sumriddetchkajorn, K. Chaitavon, and Y. Intaravanne, “Mobile-platform based colorimeter for monitoring chlorine concentration in water,” Sensors and Actuators B: Chemical, 2014, 191: 561–566 2014.

    Article  Google Scholar 

  11. Y. Intaravannea, S. Sumriddetchkajorn, and J. Nukeawa, “Cell phone-based two-dimensional spectral analysis for banana ripeness estimation,” Sensors and Actuators B: Chemical, 2012, 168: 390–394.

    Article  Google Scholar 

  12. A. García, M. M. Erenas, E. D. Marinetto, C. A. Abada, I. O. Paya, A. J. Palma, et al., “Mobile phone platform as portable chemical analyzer,” Sensors and Actuators B: Chemical, 2011, 156(1): 350–359, 2011.

    Article  Google Scholar 

  13. Z. Iqbal and R. B. Bjorklund, “Assessment of a mobile phone for use as a spectroscopic analytical tool for foods and beverages,” International Journal of Food Science & Technology, 2011, 46(11): 2428–2436.

    Article  Google Scholar 

  14. J. Canning, A. Lau, M. Naqshbandi, I. Petermann, and M. J. Crossley, “Measurement of fluorescence in a rhodamine-123 doped self-assembled’ giant’ meso-structured silica sphere using a smartphone as optical hardware,” Sensors, 2011, 11(7): 70551–7062.

    Google Scholar 

  15. Z. Iqbal and R. B. Bjorklund, “Colorimetric analysis of water and sand samples performed on a mobile phone,” Talanta, 2011, 84(4): 1118–1123.

    Article  Google Scholar 

  16. T. S. Park and J. Y. Yoon, “Smartphone detection of escherichia coli from field water samples on paper microfluidics” IEEE Sensor Journal, 2015, 15(3): 1902–1907.

    MathSciNet  Article  Google Scholar 

  17. D. N. Breslauer, R. N. Maamari, N. A. Switz, W. A. Lam, and D. A. Fletcher, “Mobile phone based clinical microscopy for global health applications,” PLoS ONE, 2009, 4(7): e6320-1–e6320-7, 2009.

  18. Z. J. Smith, K. Chu, A. R. Espenson, A. Gryshuk, M. Molinaro, D. M. Dwyre, et al., “Cell phone-based platform for biomedical device development and education applications,” PLoS ONE, 2011, 6(3): e17150-1–e17150-11.

  19. Q. Wei, H. Qi, W. Luo, D. Tseng, S. J. Ki, Z. Wan, et al., “Fluorescent imaging of single nanoparticles and viruses on a smart phone,” ACS Nano, 2013, 7(10): 9147–9155.

    Article  Google Scholar 

  20. A. Skandarajah, C. D. Reber, N. A. Switz, and D. A. Fletcher, “Quantitative imaging with a mobile phone microscope,” PLoS ONE, 2014, 9(5): e96906-1–e96906-12.

  21. S. Lee and C. Yang, “A smartphone-based chip-scale microscope using ambient illumination,” Lab Chip, 2014, 14(16): 3056–3063.

    Article  Google Scholar 

  22. H. C. Koydemir, Z. Gorocs, D. Tseng, B. Cortazar, S. Feng, R. Y. L. Chan, et al., “Rapid imaging, detection and quantification of Giardia lamblia cysts using mobile-phone based fluorescent microscopy and machine learning,” Lab Chip, 2015, 15(5): 1284–1293.

    Article  Google Scholar 

  23. S. K. J. Ludwig, H. Zhu, S. Phillips, A. Shiledar, S. Feng, D. Tseng, et al., “Cellphone-based detection platform for rbST biomarker analysis in milk extracts using a microsphere fluorescence immunoassay,” Analytical and Bioanalytical Chemistry, 2014, 406(27): 6857–6866.

    Article  Google Scholar 

  24. D. Gallegos, K. D. Long, H. Yu, P. P. Clark, Y. Lin, S. George, et al., “Label-free bio-detection using a smartphone,” Lab Chip, 2013, 13(11): 2124–2132.

    Article  Google Scholar 

  25. H. Yu, Y. Tan, and B. T. Cunningham, “Smartphone fluorescence spectroscopy,” Analytical Chemistriy, 2014, 86(17): 8805–8813.

    Article  Google Scholar 

  26. S. Dutta, A. Choudhury, and P. Nath, “Evanescent wave coupled spectroscopic sensing using smartphone,” IEEE Photonics Technology Letters, 2014, 26(6): 568–570.

    Article  ADS  Google Scholar 

  27. M. A. Hossain, J. Canning, S. Ast, K. Cook, P. J. Rutledge, and A. Jamalipour, “Combined ‘dual’ absorption and fluorescent smartphone spectrometers,” Optics Letters, 2015, 40(8): 1737–1740.

    Article  ADS  Google Scholar 

  28. A. W. Martinez, S. T, Phillips, E. Carrilho, S. W. Thomas, H. Sindi, and G. M. Whitesides, “Simple telemedicine for developing regions: camera phones and paper-based microfluidic devices for real-time, off-site diagnosis,” Analytical Chemistriy, 2008, 80(10): 3699–3707.

    Article  Google Scholar 

  29. L. Shen, J. A. Hagan, and I. Papautsky, “Point-of-care colorimetric detection with a smartphone,” Lab Chip, 2012, 12(21): 4240–4243.

    Article  Google Scholar 

  30. J. I. Hong and B. Y. Chang, Development of “Smartphone-based colorimetry for multi-analyte sensing arrays,” Lab Chip, 2014, 14(10): 1725–1732.

    Article  Google Scholar 

  31. J. E. Smith, D. K. Griffin, J. K. Leny, J. A. Hagen, J. L. Chávez, and N. K. Loughnane, “Colorimetric detection with aptamer-gold nanoparticle conjugates coupled to an android based color analysis application for use in the field,” Talanta, 2014, 121: 247–255.

    Article  Google Scholar 

  32. O. M. Mancuso and D. Erickson, “Cholesterol testing on a smartphone,” Lab Chip, 2014, 14(4): 759–763.

    Article  Google Scholar 

  33. N. S. K. Gunda, S. Naicker, S. Shinde, S. Kimbahune, S. Shrivastava, and S. Mitra, “Mobile water kit (MWK): a smartphone compatible low-cost water monitoring system for rapid detection of total coliform and E. coli,” Analytical Methods, 2014, 6(16): 62361–6246.

    Google Scholar 

  34. D. Erickson, D. O’Dell, L. Jiang, V. Oncescu, A. Gumus, S. Lee, et al., “Smartphone technology can be transformative to the deployment of lab-on-chip diagnostics,” Lab Chip, 2014, 14(17): 3159–3164.

    Article  Google Scholar 

  35. T. S. Park, C. Baynes, S. I. Cho, and J. Y. Yoon, “Paper microfluidics for red wine tasting,” RSC Advance, 2014, 4(46): 24356–24362.

    Article  Google Scholar 

  36. International Telecommunication Union, Mobile-cellular subscriptions 2013, Available online: http://www.itu.int/en/ITU-D/Statistics, 2015.

  37. B. Oram, Water Research Centre, Available online: http://www.water-research.net/index.php/ph-in-the-e nvironment.mm, 2014.

    Google Scholar 

  38. J. Buffle and G. Horvai, In Situ Monitoring of Aquatic Systems: Chemical Analysis and Speciation. New York, U. S. A.: Willey, 2000.

    Google Scholar 

  39. J. Canning, M. Naqshbandi, and M. J. Crossley, “Measurement of rhodamine B absorption in self-assembled silica microwires using a Tablet as the optical source,” in Proc. SPIE, vol. 8351, pp. 83512E-1–83512E -5, 2012.

  40. S. Feng, R. Caire, B. Cortazar, M. Turan, A. Wong, and A. Ozcan “Immunochromatographic diagnostic test analysis using Google Glass,” ACS Nano, 2014, 8(3): 3069–3079.

    Article  Google Scholar 

  41. B. Cortazar, H. C. Koydemir, D. Tseng, S. Feng, and A. Ozcan, “Quantification of plant chlorophyll content using google glass,” Lab Chip, 2015, 15(7): 1708–1716.

    Article  Google Scholar 

  42. Sesorex, SAM-1 for iPhone, iPad and Android, Avialable online: http://www.sensorex.com/products /more/sam_1, 2015.

  43. A. P. D. Silva, H. Q. N. Gunaratne, J. L. Habib-Jiwan, C. P. McCoy, T. E. Rice, and J. P. Soumillion, “New fluorescent model compounds for the study of photoinduced electron transfer: the influence of a molecular electric field in the excited state,” Angewandte Chemie International Edition, 1995, 34(16): 1728–1731.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to John Canning.

Additional information

This article is published with open access at Springerlink.com

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hossain, M.A., Canning, J., Ast, S. et al. Early warning smartphone diagnostics for water security and analysis using real-time pH mapping. Photonic Sens 5, 289–297 (2015). https://doi.org/10.1007/s13320-015-0256-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13320-015-0256-x

Keywords

  • Lab-in-a-phone
  • Internet of Things
  • optical sensing and sensor
  • smartphone sensor
  • photonic sensor
  • fluorescence
  • water security