Advertisement

Photonic Sensors

, Volume 3, Issue 1, pp 1–25 | Cite as

Advances and new applications using the acousto-optic effect in optical fibers

  • Alexandre A. P. Pohl
  • Roberson A. Oliveira
  • Ricardo E. Da Silva
  • Carlos A. F. Marques
  • Paulo de Tarso NevesJr.
  • Kevin Cook
  • John Canning
  • Rogério N. Nogueira
Open Access
Review

Abstract

This work presents a short review of the current research on the acousto-optic mechanism applied to optical fibers. The role of the piezoelectric element and the acousto-optic modulator in the excitation of flexural and longitudinal acoustic modes in the frequency range up to 1.2 MHz is highlighted. A combination of the finite elements and the transfer matrix methods is used to simulate the interaction of the waves with Bragg and long period gratings. Results show a very good agreement with experimental data. Recent applications such as the writing of gratings under the acoustic excitation and a novel viscometer sensor based on the acousto-optic mechanism are discussed.

Keywords

Acousto-optics fiber gratings optical fibers optical sensors 

References

  1. [1]
    A. Yariv and P. Yeh, Optical waves in crystals. New York: John Wiley & Sons, Inc., 1984.Google Scholar
  2. [2]
    L. Pochhammer, “Über die Fortpflanzungsgeschwindigkeiten kleiner Schwingungen in einem unbegrenzten isotropen Kreiscylinder,” Journal für reine und angewandt Math. (Crelle), vol. 81, pp. 324–336, 1876.MathSciNetGoogle Scholar
  3. [3]
    C. Chree, “The equations on an isotropic elastic solid in polar and cylindrical coordinates, their solutions, and applications,” Transactions of the Cambridge Philosophical Society, vol. 14, pp. 250–369, 1889.ADSGoogle Scholar
  4. [4]
    J. D. Achenbach, Wave Propagation in Elastic Solids. Amsterdam: North-Holland Publishing Company, 1973.Google Scholar
  5. [5]
    L. Meirovitch, Elements of vibration analysis. Singapore: The McGraw-Hill Company, 1986.Google Scholar
  6. [6]
    J. S. Rao, Advanced theory of vibration. New Delhi, India: John Wiley & Sons, Inc., 1992.Google Scholar
  7. [7]
    R. N. Thurston, “Elastic waves in rods and clad rods,” Journal of the Acoustic Society of America, vol. 64, no. 1, pp. 1–37, 1978.ADSCrossRefGoogle Scholar
  8. [8]
    S. A. Zemon and M. L. Dakss, “Acoustoptic modulator for optical fiber waveguides,” U. S. Patent 4068191, 1978.Google Scholar
  9. [9]
    H. Jaffe, “Piezoelectric ceramics,” Journal of the American Ceramic Society, vol. 41, no. 11, pp. 494–498, 1958.CrossRefGoogle Scholar
  10. [10]
    H. Jaffe and D. A. Berlincourt, “Piezoelectric transducer materials,” Proceedings of the IEEE, vol. 53, no. 10, pp. 1372–1386, 1965.CrossRefGoogle Scholar
  11. [11]
    R. A. Oliveira, P. T. Neves, J. T. Pereira, J. Canning, and A. A. P. Pohl, “Vibration mode analysis of a silica horn fiber Bragg grating device,” Optics Communications, vol. 283, no. 7, pp. 1296–1302, 2010.ADSCrossRefGoogle Scholar
  12. [12]
    M. Berwick, C. N. Pannell, P. St. J. Russell, and D. A. Jackson, “Demonstration of birefringent optical fibre frequency shifter employing torsional acoustic waves,” Electronics Letters, vol. 27, no. 9, pp. 713–715, 1991.ADSCrossRefGoogle Scholar
  13. [13]
    K. J. Lee, K. S. Hong, H. C. Park, and B. Y. Kim, “Polarization coupling in a highly birefringent photonic crystal fiber by torsional acoustic wave,” Optics Express, vol. 16, no. 7, pp. 4631–4638, 2008.ADSCrossRefGoogle Scholar
  14. [14]
    H. E. Engan, B. Y. Kim, J. N. Blake, and H. J. Shaw, “Optical frequency shifting in two-mode optical fibers by flexural acoustic waves,” IEEE Ultrasonic Symposium, pp. 435–438, 1986.Google Scholar
  15. [15]
    W. F. Liu, P. St. J. Russell, and L. Dong, “Acousto-optic superlattice modulator using a fiber Bragg grating,” Optics Letters, vol. 22, no. 19, pp. 1515–1517, 1997.ADSCrossRefGoogle Scholar
  16. [16]
    H. E. Engan, B. Y. Kim, J. N. Blake, and H. J. Shaw, “Propagation and optical interaction of guided acoustic waves in two-mode optical fibers,” Journal of Lightwave Technology, vol. 6, no. 3, pp. 428–436, 1988.ADSCrossRefGoogle Scholar
  17. [17]
    J. N. Blake, B. Y. Kim, H. E. Engan, and H. J. Shaw, “Analysis of intermodal coupling in a two-mode fiber with periodic microbends,” Optics Letters, vol. 12, no. 4, pp. 281–283, 1987.ADSCrossRefGoogle Scholar
  18. [18]
    R. A. Oliveira, “Characterization and new applications of the acousto-optic effect in fiber gratings,” Ph.D. dissertation, Federal University of Technology — Paraná, 2011.Google Scholar
  19. [19]
    A. H. Meitzler, H. M. Jr. O’Bryan, and H. F. Tiersten, “Definition and measurement of radial mode coupling factors in piezoelectric ceramic materials with large variations in Poisson’s Ratio,” IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, vol. 20, no. 3, pp. 233–239, 1973.Google Scholar
  20. [20]
    M. Brissaud, “Characterization of piezoceramics,” IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, vol. 38, no. 6, pp. 603–617, 1991.ADSCrossRefGoogle Scholar
  21. [21]
    M. Brissaud, “Three-dimensional modeling of piezoelectric materials,” IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, vol. 57, no. 9, pp. 2051–2065, 2010.CrossRefGoogle Scholar
  22. [22]
    X. H. Du, Q. M. Wang, and K. Uchino, “An accurate method for the determination of complex coefficients of single crystal piezoelectric resonators II: design of measurement and experiments,” IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, vol. 51, no. 2, pp. 238–248, 2004.CrossRefGoogle Scholar
  23. [23]
    A. Baliato, “Modeling piezoelectric and piezomagnetic devices and structures via equivalent networks,” IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, vol. 48, no. 5, pp. 1189–1240, 2001.CrossRefGoogle Scholar
  24. [24]
    Available from: http://www.comsol.com.
  25. [25]
    Available from: http://www.ansys.com.
  26. [26]
    Y. Jiang, “High-resolution interrogation technique for fiber optic extrinsic Fabry-Perot interferometric sensors by the peak-to-peak method,” Applied Optics, vol. 47, no. 7, pp. 925–932, 2008.ADSCrossRefGoogle Scholar
  27. [27]
    Y. Huang, T. Wei, Z. Zhou, Y. Zhang, G. Chen, and H. Xiao, “An extrinsic Fabry-Perot interferometer-based large strain sensor with high resolution,” Measurement Science and Technology, vol. 21, no. 10, pp. 105308, 2010.ADSCrossRefGoogle Scholar
  28. [28]
    R. E. Silva and A. A. P. Pohl, “Characterization of flexural acoustic waves in optical fibers using an extrinsic Fabry-Perot interferometer,” Measurement Science and Technology, vol. 23, no. 5, pp. 055206, 2012.ADSCrossRefGoogle Scholar
  29. [29]
    R. E. Silva and A. A. P. Pohl, “Characterization of longitudinal acoustic waves in a fiber using an extrinsic Fabry-Perot interferometer,” presented at the 22nd International Conference on Optical Fiber Sensors (OFS), Beijing, China, Oct. 15–19, 2012.Google Scholar
  30. [30]
    A. W. Snyder and J. D. Love, Optical Waveguide Theory. New York, USA: Chapman and Hall Ltd., pp. 542, 1983.CrossRefGoogle Scholar
  31. [31]
    H. F. Taylor, “Bending effects in optical fibers,” Journal of Lightwave Technology, vol. LT-2, no. 5, pp. 617–627, 1984.ADSCrossRefGoogle Scholar
  32. [32]
    B. Y. Kim, J. N. Blake, H. E. Engan, and H. J. Shaw, “All-fiber acousto-optic frequency shifter,” Optics Letters, vol. 11, no. 6, pp. 389–391, 1986.ADSCrossRefGoogle Scholar
  33. [33]
    T. A. Birks, P. St. J. Russel, and D. O. Culverhouse, “The acousto-optic effect in single-mode fiber tapers and couplers,” Journal of Lightwave Technology, vol. 14, no. 11, pp. 2519–2529, 1996.ADSCrossRefGoogle Scholar
  34. [34]
    T. Matsui, K. Nakajima, K. Shiraki, and T. Kurashima, “Ultra-broadband mode conversion with acousto-optic coupling in hole-assisted fiber,” Journal Lightwave Technology, vol. 27, no. 13, pp. 2183–2188, 2009.ADSCrossRefGoogle Scholar
  35. [35]
    T. A. Birks, P. St. J. Russell, and C. N. Pannell, “Low power acousto-optic device based on a tapered single mode fiber,” IEEE Photonics Technology Letters, vol. 6, no. 6, pp. 725–727, 1994.ADSCrossRefGoogle Scholar
  36. [36]
    R. Feced, C. Alegria, M. N. Zervas, and R. I. Laming, “Acousto-optic attenuation filters based on tapered optical fibers,” IEEE Journal Selected Topics in Quantum Electronics, vol. 5, no. 5, p. 1278–1288, 1999.CrossRefGoogle Scholar
  37. [37]
    J. Zhao and X. Liu, “Fiber acousto-optic mode coupling between the higher-order modes with adjacent azimuthal numbers,” Optics Letters, vol. 31, no. 11, pp. 1609–1611, 2006.ADSCrossRefGoogle Scholar
  38. [38]
    A. Othonos and K. Kalli, Fiber Bragg gratings — fundamentals and applications in telecommunications and sensing. Boston: Artech House, 1999.Google Scholar
  39. [39]
    T. Erdogan, “Fiber grating spectra,” Journal of Lightwave Technology, vol. 15, no. 8, pp. 1277–1294, 1997.ADSCrossRefGoogle Scholar
  40. [40]
    W. F. Liu, P. St. J. Russell, and L. Dong, “Acousto-optic superlattice modulator using a fiber Bragg grating,” Optics Letters, vol. 22, no. 19, pp. 1515–1517, 1997.ADSCrossRefGoogle Scholar
  41. [41]
    P. St. J. Russell and W. F. Liu, “Acousto-optic superlattice modulation in fiber Bragg gratings,” Journal Optics Society of America A, vol. 17, no. 8, pp. 1421–1429, 2000.ADSCrossRefGoogle Scholar
  42. [42]
    O. C. Zienkiewicz and R. L. Taylor, The finite element method, Volume 1: The basis. Oxford: Butterworth-Heinemann, 2000.Google Scholar
  43. [43]
    M. Yamada and K. Sakoda, “Analysis of almost-periodic distributed feedback slab waveguides via a fundamental matrix approach,” Applied Optics, vol. 26, no. 16, pp. 3474–3478, 1987.ADSCrossRefGoogle Scholar
  44. [44]
    F. Abrishamian, S. Sato, and M. Imai, “A new method of solving multimode coupled equations for analysis of uniform and non-uniform fiber Bragg gratings and its application to acousticly induced superstructure modulation,” Optical Review, vol. 12, no. 6, pp. 467–471, 2005.ADSCrossRefGoogle Scholar
  45. [45]
    R. A. Oliveira, P. T. NevesJr, J. T. Pereira, and A. P. P. Pohl, “Numerical approach for designing a Bragg grating acousto-optics modulator using finite element and transfer matrix methods,” Optics Communications, vol. 281, no. 19, pp. 4899–4905, 2008.ADSCrossRefGoogle Scholar
  46. [46]
    A. A. P. Pohl, K. Cook, and J. Canning, “Acoustic-induced modulation of photonic crystal fibre Bragg gratings,” In Proceedings of the 10th International Conference on Transparent Optical Networks, Athen, Greece, vol. 2, pp. 51–54, 2008.Google Scholar
  47. [47]
    M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filter,” Journal Lightwave Technology, vol. 14, no. 1, pp. 58–65, 1996.ADSCrossRefGoogle Scholar
  48. [48]
    S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Measurement Science and Technology, vol. 14, no. 5, pp. R49–R61, 2003.ADSCrossRefGoogle Scholar
  49. [49]
    G. Rego, P. Marques, J. Santos, and H. Salgado, “Arc-induced long-period grating,” Fiber and Integrated Optics, vol. 24, no. 3–4, pp. 245–259, 2005.ADSCrossRefGoogle Scholar
  50. [50]
    R. C. Kamikawachi, G. R. Possetti, R. Falate, M. Muller, and J. L. Fabris, “Influence of surrounding media refractive index on the thermal and strain sensitivities of long period gratings,” Applied Optics, vol. 46, no. 35, pp. 2831–2837, 2007.ADSCrossRefGoogle Scholar
  51. [51]
    C. F. Beards, Structural vibration: analysis and damping, 1st edition, Butterwoth-Heinemann, 1996.Google Scholar
  52. [52]
    R. A. Oliveira, G. R. C. Posseti, C. A. F. Marques, P. T. Never, K. Cook, R. C. Kamikawachi, et al., “Control of the long period grating spectrum through low frequency flexural acoustic waves,” Measurement Science & Technology, vol. 22, no. 4, pp. 045205, 2011.ADSCrossRefGoogle Scholar
  53. [53]
    H. S. Kim, S. H. Yun, H. K. Kim, N. Park, and B.Y. Kim, “Dynamic erbium-doped fiber amplifier based on active gain-flattening with fiber acousto-optic tunable filters,” IEEE Photonics Technology Letters, vol. 11, no. 10, pp. 1229–1231, 1999.ADSCrossRefGoogle Scholar
  54. [54]
    D. W. Huang, W. F. Liu, C. W. Wu, and C. C. Yang, “Reflectivity-tunable fiber Bragg grating reflectors,” IEEE Photonics Technology Letters, vol. 12, no. 2, pp. 176–178, 2000.ADSCrossRefGoogle Scholar
  55. [55]
    W. F. Liu, I. M. Liu, L. W. Chung, D. W. Huang, and C. C. Yang, “Acoustic-induced switching of the reflection wavelength in a fiber Bragg grating,” Optics Letters, vol. 25, no. 18, pp. 1319–1321, 2000.ADSCrossRefGoogle Scholar
  56. [56]
    W. F. Liu and P. J. Tu, “Switchable narrow-bandwidth comb filters based on an acousto-optic superlattice modulator in sinc-sampled fiber gratings,” Optical Engineering, vol. 40, no. 8, pp. 1513–1515, 2001.ADSCrossRefGoogle Scholar
  57. [57]
    A. Diez, M. Delgado-Pinar, J. Mora, J. L. Cruz, and M. V. Andrés, “Dynamic fiber-optic add-drop multiplexer using Bragg gratings and acousto-optic-induced coupling,” IEEE Photonics Technology Letters, vol. 15, no. 1, pp. 84–86, 2003.ADSCrossRefGoogle Scholar
  58. [58]
    D. I. Yeom, H. S. Park, and B. Y. Kim, “Tunable narrow-bandwidth optical filter based on acousticly modulated fiber Bragg grating,” IEEE Photonics Technology Letters, vol. 16, no. 5, pp. 1313–1315, 2004.ADSCrossRefGoogle Scholar
  59. [59]
    M. Delgado-Pinar, D. Zalvidea, A. Díez, P. Pérez-Millán, and M. V. Andrés, “Q-switching of an all-fiber laser by acousto-optic modulation of a fiber Bragg grating,” Optics Express, vol. 14, no. 3, pp. 1106–1112, 2006.ADSCrossRefGoogle Scholar
  60. [60]
    Z. Luo, C. Ye, Z. Cai, X. Dai, Y. Kang, and H. Xu, “Numerical analysis and optimization of optical spectral characteristics of fiber Bragg gratings modulated by a transverse acoustic wave,” Applied Optics, vol. 46, no. 28, pp. 6959–6965, 2007.ADSCrossRefGoogle Scholar
  61. [61]
    C. A. F. Marques, R. A. Oliveira, A. P. P. Pohl, J. Canning, and R. N. Nogueira, “Dynamic control of a phase-shifted FBG through acousto-optic modulation,” Optics Communications, vol. 284, no. 5, pp. 1228–1231, 2011.ADSCrossRefGoogle Scholar
  62. [62]
    C. Cuadrado-Laborde, A. Diez, M. Delgado-Pinar, J. L. Cruz, and M. V. Andrés, “Mode-Locking of an all-fiber laser by acousto-optic superlattice modulation,” Optics Letters, vol. 34, no. 7, pp. 1111–1113, 2009.ADSCrossRefGoogle Scholar
  63. [63]
    L. Grüner-Nielsen, S. N. Knudsen, B. Edvold, T. Veng, D. Magnussen, C. C. Larsen, et al., “Dispersion compensating fibers,” Optical Fiber Technology, vol. 6, no. 2, pp. 164–180, 2000.ADSCrossRefGoogle Scholar
  64. [64]
    Y. Painchaud, C. Paquet, and M. Guy, “Optical tunable dispersion compensators,” Optics and Photonics News, vol. 18, no. 9, pp 48–53, 2007.ADSCrossRefGoogle Scholar
  65. [65]
    N. M. Litchinitser, B. J. Eggleton, and D. V. Patterson, “Fiber Bragg gratings for dispersion compensation in transmission: theoretical model and design criteria for nearly ideal pulse recompression,” Journal of Lightwave Technology, vol. 15, no. 8, pp. 1303–1319, 1997.ADSCrossRefGoogle Scholar
  66. [66]
    J. F. Brennan III, “Broadband fiber Bragg gratings for dispersion management,” Journal of Optical and Fiber Communications Report, vol. 2, no. 5, pp. 397–434, 2005.CrossRefGoogle Scholar
  67. [67]
    M. Sumetsky and B. J. Eggleton, “Fiber Bragg gratings for dispersion compensation in optical communication systems,” in Ultra-High Speed Optical Transmission Technology, Springer Science + Business Media Inc., vol. 3, pp. 277–299, 2007.ADSCrossRefGoogle Scholar
  68. [68]
    J. Lauzon, S. Thibault, J. Martin, and F. Oullette, “Implementation and characterization of fiber Bragg gratings linearly chirped by a temperature gradient,” Optics Letters, vol. 19, no. 23, pp. 2027–2029, 1994.ADSCrossRefGoogle Scholar
  69. [69]
    B. J. Eggleton, A. Ahuja, P. S. Westbrook, J. A. Rogers, P. Kuo, T. N. Nielsen, et al., “Integrated tunable fiber gratings for dispersion management in high-bit rate systems,” Journal of Lightwave Technology, vol. 18, no. 10, pp. 1418–1432, 2000.ADSCrossRefGoogle Scholar
  70. [70]
    Y. J. Lee, J. Bae, K. Lee, Je-M. Jeong, and S. B. Lee, “Tunable dispersion and dispersion slope compensator using strain-chirped fiber Bragg grating,” IEEE Photonics Technology Letters, vol. 19, no. 10, pp. 762–764, 2007.ADSCrossRefGoogle Scholar
  71. [71]
    K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” Journal of Lightwave Technology, vol. 15, no. 8, pp. 1263–1276, 1997.ADSCrossRefGoogle Scholar
  72. [72]
    R. A. Oliveira, K. Cook, J. Canning, and A. A. P. Pohl, “Bragg grating writing in acoustically excited optical fiber,” Applied Physics Letters, vol. 97, no. 4, pp. 041101, 2010.ADSCrossRefGoogle Scholar
  73. [73]
    R. A. Oliveira, K. Cook, C. A. F. Marques, J. Canning, R. N. Nogueira, and A. A. P. Pohl, “Complex Bragg grating writing using direct modulation of the optical fibre with flexural acoustic waves,” Applied Physics Letters, vol. 99, no. 16, pp. 161111, 2011.ADSCrossRefGoogle Scholar
  74. [74]
    J. Canning, H. J. Deyerl, and M. Kristensen, “Precision phase-shifting applied to fiber Bragg gratings,” Optics Communications, vol. 244, no. 1–6, pp. 187–191, 2005.ADSCrossRefGoogle Scholar
  75. [75]
    P. Hill, J. Canning, B. Eggleton, M. G. Sceats, private communication.Google Scholar
  76. [76]
    B. J. Eggleton, P. A. Krug, L. Poladian, and F. Ouellete, “Long periodic superstructures Bragg gratings in optical fibres,” Electronics Letters, vol. 30, no. 19, pp. 1620–1622, 1994.CrossRefGoogle Scholar
  77. [77]
    J. Canning and M. G. Sceats, “π-phase-shifted periodic distributed structures in optical fibers by UV postprocessing,” Electronics Letters, vol. 30, no. 16, pp 1344–1345, 1994.ADSCrossRefGoogle Scholar
  78. [78]
    H. Li, M. Li, Y. Sheng, and J. E. Rothemberg, “Advances in the design and fabrication of high-channel count fiber Bragg gratings,” Journal of Lightwave Technology, vol. 25, no. 9, pp. 2739–2750, 2007.ADSCrossRefGoogle Scholar
  79. [79]
    E. M. Barber, J. R. Muenger, and F. J. Villforth, “High rate of shear rotational viscometer,” Analytical Chemistry, vol. 27, no. 3, pp. 425–429, 1955.CrossRefGoogle Scholar
  80. [80]
    O. Susuki, S. Ishiwata, M. Hayashi, and H. Oshima, “Vibration type rheometer apparatus,” U. S. Patent 4941346, 1990.Google Scholar
  81. [81]
    R. A. Oliveira, J Canning, K. Cook, M. Naqshbandi, and A. A. P. Pohl, “Compact dip-style viscometer based on the acousto-optic effect in a long period fibre grating,” Sensors and Actuators. B: Chemical, vol. 157, no. 2, pp. 621–626, 2011.CrossRefGoogle Scholar
  82. [82]
    D. R. Lide, CRC handbook of chemistry and physics, 89th edition. CRC Press, Boca raton, Fl, USA, 2008.Google Scholar

Copyright information

© The Author(s) 2013

This article is published under license to BioMed Central Ltd. Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Alexandre A. P. Pohl
    • 1
  • Roberson A. Oliveira
    • 2
  • Ricardo E. Da Silva
    • 1
  • Carlos A. F. Marques
    • 3
  • Paulo de Tarso NevesJr.
    • 1
  • Kevin Cook
    • 4
  • John Canning
    • 4
  • Rogério N. Nogueira
    • 3
  1. 1.Advanced Telecommunications LaboratoryFederal University of Technology — ParanáCuritibaBrazil
  2. 2.Volvo GTTAdvanced Technology & ResearchCuritibaBrazil
  3. 3.Instituto de TelecomunicaçõesPólo de AveiroAveiroPortugal
  4. 4.Interdisciplinary Photonics Labs, School of ChemistryUniversity of SydneyNew South WalesAustralia

Personalised recommendations