Advertisement

Photonic Sensors

, Volume 3, Issue 2, pp 168–177 | Cite as

Room temperature sol-gel fabrication and functionalization for sensor applications

  • George Huyang
  • John Canning
  • Ingemar Petermann
  • David Bishop
  • Andrew McDonagh
  • Maxwell J. Crossley
Open Access
Regular

Abstract

The structure and physical properties of a thin titania sol-gel layer prepared on silicon and silica surfaces were examined. Spectroscopic (FTIR, UV-VIS spectroscopy), refractive index (ellipsometry) and microscopic (light microscopy and SEM/EDS) tools were used to examine both chemical uniformity and physical uniformity of the sol-gel glass layers. The conditions for the fabrication of uniform layers were established, and room temperature dopant incorporation was examined. The absorption bands of porphyrin-containing titania sol-gel layers were characterized. By addition of a metal salt to the titania layer, it was possible to metallate the free-base porphyrin within and change the UV-VIS absorbance of the porphyrin, the basis of metal detection using porphyrins. The metalloporphyrins were detected by localized laser ablation inductive coupled mass spectroscopy (LA-ICP-MS), indicating fairly uniform distribution of metals across the titania surface.

Keywords

Sol-gel titania titanium dioxide evanescent field sensor organic compound spectroscopy microscopy surface functionalization ablation inductive coupled mass spectroscopy 

References

  1. [1]
    J. Canning, “Properties of specialist fibers and Bragg gratings for optical fiber sensors,” Journal of Sensors, vol. 2009, pp. 871580, 2009.CrossRefGoogle Scholar
  2. [2]
    R. Gupta and N. K. Chaudhury, “Entrapment of biomolecules in sol-gel matrix for applications in biosensors: problems and future prospects,” Biosensors Bioelectronics, vol. 22, no. 11, pp. 2387–2399, 2007.CrossRefGoogle Scholar
  3. [3]
    P. C. A. Jerónimoa, A. N. Araújo, and M. C. B. S. M. Montenegro, “Optical sensors and biosensors based on sol-gel films”, Talanta, vol. 72, no. 1, pp. 13–27, 2007.CrossRefGoogle Scholar
  4. [4]
    G. Huyang, J. Canning, M. L. Åslund, D. Stocks, T. Khoury, and M. J. Crossley, “Evaluation of optical fiber microcell reactor for use in remote acid sensing,” Optics Letters, vol. 35, no. 6, pp. 817–819, 2010.ADSCrossRefGoogle Scholar
  5. [5]
    J. Y. Wen and G. L. Wilkes, “Organic/Inorganic hybrid network materials by the sol-gel approach,” Chemistry of Materials, vol. 8, no. 8, pp. 1667–1681, 1996.CrossRefGoogle Scholar
  6. [6]
    J. Canning, W. Padden, D. Boskovic, M. Naqshbandi, H. de Bruyn, and M. J. Crossley, “Manipulating and controlling the evanescent field within optical waveguides using high index nanolayers,” Optical Materials Express, vol. 1, no. 2, pp. 192–200, 2011.CrossRefGoogle Scholar
  7. [7]
    S. J. Park, Y. C. Kang, J. Y. Park, E. A. Evans, R. D. Ramsier, and G. G. Chase, “Physical characteristics of titania nanofibers synthesized by sol-gel and electrospinning techniques,” Journal of Engineered Fibers and Fabrics, vol. 5, no. 1, pp. 50–56, 2010.Google Scholar
  8. [8]
    Z. Miao, D. Xu, J. Ouyang, G. Guo, X. Zhao, and Y. Tang, “Electrochemically induced sol-gel preparation of single-crystalline TiO2 nanowires,” Nano Letters, vol. 2, no. 7, pp. 717–720, 2002.ADSCrossRefGoogle Scholar
  9. [9]
    C. C. Wang and J. Y. Ying, “Sol-gel synthesis and hydrothermal processing of anatase and rutile titania nanocrystals,” Chemistry of Materials, vol. 11, no. 11, pp. 3113–3120, 1999.CrossRefGoogle Scholar
  10. [10]
    D. Delmarre, R. Méallet, C. Bied-Charreton, and R. B. Pansu, “Heavy metal ions detection in solution, in sol-gel and with grafted porphyrin monolayers,” Journal of Photochemistry Photobiology A: Chemistry, vol. 124, no. 1–2, pp. 23–28, 1999.CrossRefGoogle Scholar
  11. [11]
    T. Rawling, C. Austin, D. Hare, P. A. Doble, H. M. Zareie, and A. M. McDonagh, “Thin films of ruthenium phthalocyanine complexes,” Nano Research, vol. 2, no. 9, pp. 678–687, 2009.CrossRefGoogle Scholar
  12. [12]
    C. Austin, D. Hare, T. Rawling, A. M. McDonagh, and P. J. Doble, “Quantification method for elemental bio-imaging by LA-ICP-MS using metal spiked PMMA films,” Journal of Analytical Atomic Spectrometry, vol. 25, no. 5, pp. 722–725, 2010.CrossRefGoogle Scholar
  13. [13]
    T. Lopez, E. Sanchez, P. Bosch, Y. Meas, and R. Gomez, “FTIR and UV-Vis (diffuse reflectance) spectroscopic characterization of TiO2 sol-gel,” Materials Chemistry and Physics, vol. 32, no. 2, pp. 141–152, 1992.CrossRefGoogle Scholar
  14. [14]
    T. Lopez, E. Ortiz, R. Gomez, and M. Picquart, “Amorphous sol-gel titania modified with heteropolyacids,” Journal of Sol-Gel Science and Technology, vol. 37, no. 3, pp. 189–193, 2006.CrossRefGoogle Scholar
  15. [15]
    T. Lopez, E. Ortiz-Ilas, E. Vinogradova, J. Manjarrez, J. A. Azamar, J. J. Alvarado-Gil, et al., “Structural, optical and vibrational properties of sol-gel titania/valproic acid reservoirs,” Optical Materials, vol. 29, no. 1, pp. 82–87, 2006.ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  • George Huyang
    • 1
    • 2
  • John Canning
    • 1
    • 2
  • Ingemar Petermann
    • 1
    • 2
  • David Bishop
    • 3
  • Andrew McDonagh
    • 3
  • Maxwell J. Crossley
    • 1
  1. 1.School of ChemistryThe University of SydneySydneyAustralia
  2. 2.Interdisciplinary Photonic Laboratories (iPL), School of ChemistryThe University of SydneySydneyAustralia
  3. 3.University of Technology SydneyBroadwayAustralia

Personalised recommendations