Advertisement

Photonic Sensors

, Volume 2, Issue 2, pp 173–179 | Cite as

Design of optical logic gates using self-collimated beams in 2D photonic crystal

  • X. Susan ChristinaEmail author
  • A. P. Kabilan
Open Access
Regular

Abstract

Optical logic gates are elementary components for optical network and optical computing. In this paper, we propose a structure for AND, NAND, XNOR and NOR logic gates in the two dimensional photonic crystal which utilizes the dispersion based self-collimation effect. The self-collimated beam is splitted by the line defect and interfered with other self-collimated beam. This interference may be constructive or destructive based on their phase difference. This phenomenon is employed to realize all-optical logic gates. The gates are demonstrated numerically by computing electromagnetic field distribution using the finite difference time domain (FDTD) method. The results ensure that this design can function as AND, NAND, XNOR and NOR logic gates. The size of the structure is about 10 μm × 10 μm which in turn results in an increase in the speed and all the gates are realized in the same configuration. The ON-OFF contrast ratio is about 6 dB.

Keywords

Optical computing photonic crystal band diagram equifrequency contour all-optical logic gates 

References

  1. [1]
    T. Yamamoto, E. Yoshida, and M. Nakazawa, “Ultrafast nonlinear optical loop mirror for demultiplexing 640 Gbit/s TDM signals,” Electronics Letters, vol. 34, no. 10, pp. 1013–1014, 1998.CrossRefGoogle Scholar
  2. [2]
    T. Fjelde, A. Kloch, D. Wolfson, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, and M. Renaud, “Novel scheme for simple label-swapping employing XOR logic in integrated interferometric wavelength converter,” IEEE Photonics Technology Letters, vol. 13, no. 7, pp. 750–752, 2001.ADSCrossRefGoogle Scholar
  3. [3]
    J. P. Wang, B. S. Robinson, S. A. Hamilton, and E. P. Ippen, “Demonstration of 40 Gb/s packet routing using all optical header processing,” IEEE Photonics Technology Letters, vol. 18, no. 21, pp. 2275–2277, 2006.ADSCrossRefGoogle Scholar
  4. [4]
    J. W. M. Menezes, W. B. Fraga, A. C. Ferreira, K. D. A. Saboia, A. F. G. F. Filho, G. F. Guimarães, J. R. R. Sousa, H. H. B. Rocha, and A. S. B. Sombra, “Logic gates based in two and three-modes nonlinear optical fiber couplers,” Optical and Quantum Electronics, vol. 39, no. 14, pp. 1191–1206, 2007.CrossRefGoogle Scholar
  5. [5]
    A. Bogoni, L. Poti, R. Proietti, G. Meloni, F. Ponzini, and P. Ghelfi, “Regenerative and reconfigurable all-optical logic gates for ultra-fast applications,” Electronics Letters, vol. 41, no. 7, pp. 435–436, 2005.CrossRefGoogle Scholar
  6. [6]
    K. H. Ahn, X. D. Cao, Y. Liang, B. C. Barnett, S. Chaikamnerd, and M. N. Islam, “Cascadability and functionality of all-optical low-birefringent non-linear optical loop mirror: experimental demonstration,” Journal of Optical Society of America B, vol. 14, no. 5, pp. 1228–1236, 1997.ADSCrossRefGoogle Scholar
  7. [7]
    K. S. Choi, Y. T. Byun, S. Lee, and Y. M. Jhon, “All-optical OR/NOR bi-functional logic gate by using cross-gain modulation in semiconductor optical amplifiers,” Journal of the Korean Physical Society, vol. 56, no. 4, pp. 1093–1096, 2010.CrossRefGoogle Scholar
  8. [8]
    J. H. Kim, Y. M. Jhon, Y. T. Byun, S. Lee, D. H. Woo, and S. H. Kim, “All-optical XOR gate using semiconductor optical amplifiers without additional input beam,” IEEE Photonics Technology Letters, vol. 14, no. 10, pp. 1436–1438, 2002.ADSCrossRefGoogle Scholar
  9. [9]
    Z. H. Li and G. F. Li, “Ultrahigh speed reconfigurable logic gates based on four-wave mixing in a semiconductor optical amplifier,” IEEE Photonics Technology Letters, vol. 18, no. 12, pp. 1341–1343, 2006.ADSCrossRefGoogle Scholar
  10. [10]
    H. J. S. Dorren, X. L. Yang, A. K. Mishra, Z. G. Li, H. Ju, H. Waardt, G. D. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, “All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 10, no. 5, pp. 1079–1092, 2004.CrossRefGoogle Scholar
  11. [11]
    K. E. Stubkjaer, “Semiconductor optical amplifier-based all-optical gates for high-speed optical processing,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 6, no. 6, pp. 1428–1435, 2000.CrossRefGoogle Scholar
  12. [12]
    T. Yabu, M. Geshiro, T. Kitamura, K. Nishida, and S. Sawa, “All-optical logic gates containing a two-mode nonlinear waveguide,” IEEE Journal of Quantum Electronics, vol. 38, no. 1, pp. 37–46, 2002.ADSCrossRefGoogle Scholar
  13. [13]
    Y. D. Wu, “All-optical logic gates by using multibranch waveguide structure with localized optical nonlinearity,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 11, no. 2, pp. 307–312, 2005.CrossRefGoogle Scholar
  14. [14]
    Y. D. Wu, T. T. Shih, and M. H. Chen, “New all-optical logic gates based on the local nonlinear Mach-Zehnder interferometer,” Optics Express, vol. 16, no. 1, pp. 248–257, 2008.ADSCrossRefGoogle Scholar
  15. [15]
    K. Y. Lee, Y. C. Yang, Y. J. Lin, W. Y. Lee, C. C. Lee, and S. H. Wong, “The designs of 4×2 encoder based on photonic crystals,” in Proc. SPIE (Proceedings of OSA-IEEE Asia Communications and Photonics), vol. 7630, pp. 76300I-1–76300I-7, 2009.Google Scholar
  16. [16]
    F. Cuesta-Soto, A. Martínez, J. García, F. Ramos, P. Sanchis, J. Blasco, and J. Martí, “All-optical switching structure based on a photonic crystal directional coupler,” Optics Express, vol. 12, no. 1, pp. 161–167, 2004.ADSCrossRefGoogle Scholar
  17. [17]
    M. Notomi, T. Tanabe, A. Shinya, E. Kuramochi, H. Taniyama, S. Mitsugi, and M. Morita, “Nonlinear and adiabatic control of high-Q photonic crystal nanocavities,” Optics Express, vol. 15, no. 26, pp. 17458–17481, 2007.ADSCrossRefGoogle Scholar
  18. [18]
    P. Andalib and N. Granpayeh, “All-optical ultra compact photonic crystal AND gate based on nonlinear ring resonators,” Journal of Optical Society of America B, vol. 26, no. 1, pp. 10–16, 2009.ADSCrossRefGoogle Scholar
  19. [19]
    H. S. Kim, T. K. Lee, G. Y. Oh, D. G. Kim, and Y. W. Choi, “Analysis of all optical logic gate based on photonic crystals multimode interference,” in Proc. SPIE, vol. 7606, pp. 76061F–1, 2010.CrossRefGoogle Scholar
  20. [20]
    X. S. Christina, A. P. Kabilan, and P. E. Caroline, “Ultra compact all optical logic gates using photonic band-gap materials,” Journal of Nanoelectronics and Optoelectronics, vol. 5, no. 3, pp. 397–401, 2010.CrossRefGoogle Scholar
  21. [21]
    H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Applied Physics Letters, vol. 74, no. 9, pp. 1212–1214, 1999.ADSCrossRefGoogle Scholar
  22. [22]
    D. Y. Zhao, J. Zhang, P. J Yao, and X. Y. Jiang, “Photonic crystal Mach-Zehnder interferometer based on self-collimation,” Applied Physics Letters, vol. 90, no. 23, pp. 231114-1–231114-3, 2007.ADSGoogle Scholar

Copyright information

© The Author(s) 2012

This article is published under license to BioMed Central Ltd. Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  1. 1.Department of ECEMookambigai College of EngineeringTrichyIndia
  2. 2.Chettinad College of Engineering & TechnologyPuliyurIndia

Personalised recommendations