Skip to main content
Log in

Asymmetric Optical Image Triple Masking Encryption Based on Gyrator and Fresnel Transforms to Remove Silhouette Problem

  • 3DR Express
  • Published:
3D Research

Abstract

An asymmetric scheme based on equal modulus decomposition (EMD) and singular value decomposition (SVD) encrypted using Fresnel and gyrator transform is proposed to enhance the security of the system and to make it free from silhouette problem. In this technique, it uses triple masking technique where double masking is done through random phase mask (diffusers) and the third masking is done through EMD using \(\theta\). After the triple masking the distorted obtained image is decomposed into segments (U, S, V) using SVD and each decomposed encrypted segment is transmitted through different channels and kept at different locations. The extra degree of freedom (keys) provided by triple making technique increases the key space hereby enhances the optical encryption security that makes it difficult for an attacker to find the exact key to recover an original image. It also makes it highly resistant to many conventional and iterative attacks. The robustness of the asymmetric proposed cryptosystem has been examined by simulating on MATLAB 8.3.0 (R2014a). The experimental results are provided to highlight the effectiveness, robustness and suitability of the proposed cryptosystem and to prove the feasibility and validity of the proposal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Matoba, O., Nomura, T., Perez-Cabre, E., Millan, M. S., & Javidi, B. (2009). Optical techniques for information security. Proceedings of the IEEE, 97, 1128–1148.

    Article  Google Scholar 

  2. Alfalou, A., & Brosseau, C. (2009). Optical image compression and encryption methods. Advances in Optics and Photonics, 1, 589–596.

    Article  Google Scholar 

  3. Millan, M. S., & Perez-Cabre, E. (2011). Optical data encryption. In G. Cristobal, P. Schelkens, & H. Thienpont (Eds.), Optical and digital image processing: fundamentals and applications (pp. 739–767). Weinheim: Wiley.

    Chapter  Google Scholar 

  4. Javidi, B., et al. (2016). Roadmap on optical security. Journal of Optics, 18, 083001.

    Article  Google Scholar 

  5. Refregier, P., & Javidi, B. (1995). Optical image encryption based on input plane and Fourier plane random encoding. Optics Letters, 20, 767–769.

    Article  Google Scholar 

  6. Unnikrishnan, G., Joseph, J., & Singh, K. (2000). Optical encryption by double random phase encoding in the Fractional Fourier domain. Optics Letters, 25, 887–889.

    Article  Google Scholar 

  7. Liu, X., Mei, W., & Du, H. (2014). Optical image encryption based on compressive sensing and chaos in the Fractional Fourier domain. Journal of Modern Optics, 61(19), 1570–1577.

    Article  Google Scholar 

  8. Zhou, N., Dong, T., & Wu, J. (2010). Novel image encryption algorithm based on multiple-parameter discrete fractional random transform. Optics Communication, 283(15), 3037–3042.

    Article  Google Scholar 

  9. Singh, H. (2016). Optical cryptosystem of color images using random phase masks in the fractional wavelet transform domain In AIP conference proceedings, Vol. 1728, p. 020063–1/4.

  10. Matoba, O., & Javidi, B. (1999). Encrypted optical memory system using three-dimensional keys in the Fresnel domain. Optics Letters, 24, 762–764.

    Article  Google Scholar 

  11. Situ, G., & Zhang, J. (2004). Double random-phase encoding in the Fresnel domain. Optics Letters, 29, 1584–1586.

    Article  Google Scholar 

  12. Singh, H., Yadav, A. K., Vashisth, S., & Singh, K. (2015). Optical image encryption using devil’s vortex toroidal lens in the Fresnel transform domain. International Journal of Optics, 926135, 1–13.

    Article  Google Scholar 

  13. Rodrigo, J. A., Alieva, T., & Calva, N. L. (2007). Gyrator transform: properties and applications. Optics Express, 15, 2190–2203.

    Article  Google Scholar 

  14. Wu, J., Zhang, L., & Zhou, N. (2010). Image encryption based on the multiple-order discrete fractional cosine transform. Optics Communication, 283, 1720–1725.

    Article  Google Scholar 

  15. Chen, L., & Zhao, D. (2006). Optical image encryption with Hartley transforms. Optics Letters, 31, 3438–3440.

    Article  Google Scholar 

  16. Zhou, N., Wang, Y., & Gong, L. (2011). Novel optical image encryption scheme based on fractional Mellin transform. Optics Communication, 284, 3234–3242.

    Article  Google Scholar 

  17. Vashisth, S., Singh, H., Yadav, A. K., & Singh, K. (2014). Devil’s vortex phase structure as frequency plane mask for image encryption using the fractional Mellin transform. International Journal of Optics, 728056, 1–9.

    Article  Google Scholar 

  18. Zhou, N., Li, H., Wang, D., Pan, S., & Zhou, Z. (2015). Image compression and encryption scheme based on 2D compressive sensing and fractional Mellin transform. Optics Communication, 343, 10–21.

    Article  Google Scholar 

  19. Situ, G., & Zhang, J. (2005). Multiple-image encryption by wavelength multiplexing. Optics Letters, 30, 1306–1308.

    Article  Google Scholar 

  20. Chen, L., & Zhao, D. (2006). Optical color image encryption by wavelength multiplexing and lensless Fresnel transform holograms. Optics Express, 14, 8552–8560.

    Article  Google Scholar 

  21. Gopinathan, U., Naughton, T. J., & Sheridan, J. T. (2006). Polarization encoding and multiplexing of two-dimensional signals: application to image encryption. Applied Optics, 45, 5693–5700.

    Article  Google Scholar 

  22. Li, H. (2009). Image encryption based on gyrator transform and two step phase shifting interferometry. Optics and Lasers in Engineering, 47, 45–50.

    Article  Google Scholar 

  23. Masajada, J., & Dubik, B. (2001). Optical vortex generation by three plane wave interference. Optics Communication, 198, 21–27.

    Article  Google Scholar 

  24. Carnicer, A., Montes-Usategui, M., Arcos, S., & Juvells, I. (2005). Vulnerability to chosen–ciphertext attacks of optical encryption schemes based on double random phase keys. Optics Letters, 30, 1644–1646.

    Article  Google Scholar 

  25. Peng, X., Zhang, P., Wei, H., & Yu, B. (2006). Known-plaintext attack on optical encryption based on double random phase keys. Optics Letters, 31, 1044–1046.

    Article  Google Scholar 

  26. Qin, W., & Peng, X. (2010). Asymmetric cryptosystem based on phase-truncated Fourier transforms. Optics Letters, 35, 118–120.

    Article  Google Scholar 

  27. Wang, X., & Zhao, D. (2012). A special attack on the asymmetric cryptosystem based on phase-truncated Fourier transforms. Optics Communication, 285, 1078–1081.

    Article  Google Scholar 

  28. Cai, J., Shen, X., Lei, M., Lin, C., & Dou, S. (2015). Asymmetric optical cryptosystem based on coherent superposition and equal modulus decomposition. Optics Letters, 40, 475–478.

    Article  Google Scholar 

  29. Andrews, H. C., & Patterson, C. L. (1976). Singular value decompositions and digital image processing. IEEE Transactions on Acoustics, Speech, and Signal Processing ASSP, 24, 26–53.

    Article  Google Scholar 

  30. Wang, Q. (2012). Optical image encryption with silhouette removal based on interference and phase blend processing. Optics Communication, 285, 4294–4301.

    Article  Google Scholar 

  31. Hennelly, B. M., & Sheridan, J. T. (2005). Generalizing, optimizing, and inventing numerical algorithms for the fractional Fourier, Fresnel, and linear canonical transforms. Journal of the Optical Society of America A, 22(5), 917–927.

    Article  MathSciNet  Google Scholar 

  32. Rodrigo, J. A., Alieva, T., & Calvo, M. L. (2007). Applications of gyrator transform for image processing. Optics Communication, 278, 279–284.

    Article  Google Scholar 

  33. Pei, S. C. & Ding, J. J. (2009). Properties, digital implementation, applications, and self-image phenomena of the gyrator transform. In Proceedings of the 17th European Signal Processing Conference (pp. 441–445).

  34. Singh, H., Yadav, A. K., Vashisth, S., & Singh, K. (2014). Fully-Phase encryption using double random-structured phase masks in gyrator domain. Applied Optics, 53, 6472–6481.

    Article  Google Scholar 

  35. Sui, L., Liu, B., Wang, Q., Li, Y., & Liang, J. (2015). Color-image encryption by using Yang-Gu mixture amplitude-phase retrieval algorithm in gyrator transform domain and two-dimensional sine logistic modulation map. Optics and Lasers in Engineering, 75, 17–26.

    Article  Google Scholar 

  36. Singh, H., Yadav, A. K., Vashisth, S., & Singh, K. (2015). Double phase-image encryption using Gyrator transforms, and structured phase mask in the frequency plane. Optics and Lasers in Engineering, 67, 145–156.

    Article  Google Scholar 

  37. Chen, J. X., Zhu, Z. L., Fu, C., Zhang, L. B., & Yu, H. (2015). Analysis and improvement of double image encryption scheme using pixel scrambling technique in gyrator domains. Optics and Lasers in Engineering, 66, 1–9.

    Article  Google Scholar 

  38. Vashisth, S., Yadav, A. K., Singh, H. & Singh, K. (2015). Watermarking in gyrator domain using an asymmetric cryptosystem In Proceedings of SPIE, Vol 9654, p. 96542E − 1/8.

  39. Abuturab, M. R. (2015). An asymmetric single-channel color image encryption based on Hartley transform and gyrator transform. Optics and Lasers in Engineering, 69, 49–57.

    Article  Google Scholar 

  40. Yadav, A. K., Vashisth, S., Singh, H., & Singh, K. (2015). A phase-image watermarking scheme in gyrator domain using devil’s vortex Fresnel lens as a phase mask. Optics Communication, 344, 172–180.

    Article  Google Scholar 

  41. Shi, Y., Situ, G., & Zhang, J. (2007). Multiple-image hiding in the Fresnel domain. Optics Letters, 32, 1914–1916.

    Article  Google Scholar 

  42. Chang, H. T., Hwang, H. E., Lee, C. L., & Lee, M. T. (2011). Wavelength multiplexing multiple-image encryption using cascaded phase-only masks in Fresnel transform domain. Applied Optics, 50, 710–716.

    Article  Google Scholar 

  43. Chang, H. T., Hwang, H. E., & Lee, C. L. (2011). Position multiplexing multiple-image encryption using cascaded phase-only masks in Fresnel transform domain. Optics Communication, 284, 4146–4151.

    Article  Google Scholar 

  44. Moonen, M., Dooren, P. V., & Vandewalle, J. (1992). Singular value decomposition updating algorithm for subspace tracking. SIAM Journal on Matrix Analysis and Applications, 13(4), 1015–1038.

    Article  MathSciNet  Google Scholar 

  45. Abd El-Latif, A. A., Li, L., Wang, N. & Li, Q. (2012). A new image encryption based on chaotic systems and singular value decomposition. In Proceedings of SPIE, Vol. 8334. http://dx.doi.org/10.1117/12.964281.

  46. Khurana, M., & Singh, H. (2018). data computation and secure encryption based on gyrator transform using singular value decomposition and randomization international conference on computational intelligence and data science (ICCIDS). Procedia Computer Science, 132, 1636–1645.

    Article  Google Scholar 

  47. Chen, L., Zhao, D., & Ge, F. (2013). Image encryption based on singular value decomposition and Arnold transform in fractional domain. Optics Communication, 291, 98–103.

    Article  Google Scholar 

  48. Abuturab, M. R. (2014). Color information verification system based on singular value decomposition in gyrator transform domain. Optics and Lasers in Engineering, 57, 13–19.

    Article  Google Scholar 

  49. Makbol, N. M., & Khoo, B. E. (2015). A new robust and secure digital image watermarking scheme based on the integer wavelet transform and singular value decomposition. Digit Signal Process, 33, 134–147.

    Article  Google Scholar 

  50. Girija, R., & Singh, H. (2018). A cryptosystem based on deterministic phase masks and fractional Fourier transform deploying singular value decomposition. Optical and Quantum Electronics, 50(210), 1–24.

    Google Scholar 

  51. Chen, L., Gao, X., Chen, X., He, B., Liu, J., & Li, D. (2016). A new optical image cryptosystem based on two-beam coherent superposition and unequal modulus decomposition. Optics & Laser Technology, 78, 167–174.

    Article  Google Scholar 

  52. Wang, Y., Quan, C., & Tay, C. J. (2016). New method of attack and security enhancement on an asymmetric cryptosystem based on equal modulus decomposition. Applied Optics, 55, 679–686.

    Article  Google Scholar 

  53. Cai, J., Shen, X., & Lin, C. (2016). Security-enhanced asymmetric optical cryptosystem based on coherent superposition and equal modulus decomposition. Optics Communication, 359, 26–30.

    Article  Google Scholar 

  54. Wu, J., Liu, W., Liu, Z., & Liu, S. (2015). Cryptanalysis of an asymmetric optical cryptosystem based on coherent superposition and equal modulus decomposition. Applied Optics, 54, 8921–8924.

    Article  Google Scholar 

  55. Wang, X., & Zhao, D. (2012). Optical image hiding with silhouette removal based on the optical interference principle. Applied Optics, 51, 686–691.

    Article  Google Scholar 

  56. Kumar, P., Joseph, J., & Singh, K. (2011). Optical image encryption using a jigsaw transform for silhouette removal in interference-based methods and decryption with a single special light modulator. Applied Optics, 50, 1805–1811.

    Article  Google Scholar 

  57. Qin, Y., & Gong, Q. (2013). Interference-based multiple-image encryption with silhouette removal by position multiplexing. Applied Optics, 52, 3987–3992.

    Article  Google Scholar 

  58. Gong, Q., Wang, Z., Lv, X., & Qin, Y. (2016). Interference-based image encryption with silhouette removal by aid of compressive sensing. Optics Communication, 359, 290–296.

    Article  Google Scholar 

  59. Chen, W., & Chen, X. (2014). Iterative phase retrieval for simultaneously generating two phase-only masks with silhouette removal in interference-based optical encryption. Optics Communication, 331, 133–138.

    Article  Google Scholar 

  60. Zhong, Z., Qin, H., Liu, L., Zhang, Y., & Shan, M. (2017). Silhouette-free image encryption using interference in the multiple-parameter fractional Fourier transform domain. Optics Express, 25, 6974–6982.

    Article  Google Scholar 

  61. Khurana, M., & Singh, H. (2017). An asymmetric image encryption based on phase truncated hybrid transform. 3D Research, 8(28), 1–17.

    Google Scholar 

  62. Yadav, P. L., & Singh, H. (2018). Optical double image hiding in the fractional Hartley transform using structured phase filter and Arnold transform. 3D Research, 9(20), 1–20.

    Google Scholar 

  63. Xu, Y., Wang, H., Li, Y., & Pei, B. (2014). Image encryption based on synchronization of fractional chaotic systems. Communications in Nonlinear Science and Numerical Simulation, 19, 3735–3744.

    Article  MathSciNet  Google Scholar 

  64. Wu, J., Xu, Y., Wang, H., & Kurths, J. (2017). information-based measures for logical stochastic resonance in a synthetic gene network under Lévy flight superdiffusion. Chaos, 27, 063105.

    Article  MathSciNet  Google Scholar 

  65. Li, Y., Xu, Y., Xu, W., Deng, Z., & Kurths, J. (2017). Fine separation of particles via the entropic splitter. Physical Review E, 96, 022152.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehak Khurana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khurana, M., Singh, H. Asymmetric Optical Image Triple Masking Encryption Based on Gyrator and Fresnel Transforms to Remove Silhouette Problem. 3D Res 9, 38 (2018). https://doi.org/10.1007/s13319-018-0190-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13319-018-0190-y

Keywords

Navigation