3D Research

, 9:2 | Cite as

Salient Point Detection in Protrusion Parts of 3D Object Robust to Isometric Variations

  • Mahsa Mirloo
  • Hosein Ebrahimnezhad
3DR Express


In this paper, a novel method is proposed to detect 3D object salient points robust to isometric variations and stable against scaling and noise. Salient points can be used as the representative points from object protrusion parts in order to improve the object matching and retrieval algorithms. The proposed algorithm is started by determining the first salient point of the model based on the average geodesic distance of several random points. Then, according to the previous salient point, a new point is added to this set of points in each iteration. By adding every salient point, decision function is updated. Hence, a condition is created for selecting the next point in which the iterative point is not extracted from the same protrusion part so that drawing out of a representative point from every protrusion part is guaranteed. This method is stable against model variations with isometric transformations, scaling, and noise with different levels of strength due to using a feature robust to isometric variations and considering the relation between the salient points. In addition, the number of points used in averaging process is decreased in this method, which leads to lower computational complexity in comparison with the other salient point detection algorithms.


Non-rigid 3D model Salient points of 3D model Protrusion parts Isometric variations Geodesic distance 


  1. 1.
    Liu, J., & Wang, S. (2015). Salient region detection via simple local and global contrast representation. Neurocomputing, 147, 435–443.CrossRefGoogle Scholar
  2. 2.
    Dutagaci, H., Cheung, C. P., & Godil, A. (2012). Evaluation of 3D interest point detection techniques via human-generated ground truth. The Visual Computer, 28, 901–917.CrossRefGoogle Scholar
  3. 3.
    Pedrosa, G. V., Traina, A. J., & Barcelos, C. A. (2017). Retrieving 2D shapes by similarity based on bag of salience points. Multimedia Tools and Applications, 76, 20957–20971.CrossRefGoogle Scholar
  4. 4.
    Pedrosa, G. V., & Barcelos, C. A. (2010). Anisotropic diffusion for effective shape corner point detection. Pattern Recognition Letters, 31, 1658–1664.CrossRefGoogle Scholar
  5. 5.
    Jin, C., & Ke, S.-W. (2017). Content-based image retrieval based on shape similarity calculation. 3D Research, 8, 23.CrossRefGoogle Scholar
  6. 6.
    Yang, Y., Hu, X., Wu, N., Wang, P., Xu, D., & Rong, S. (2017). A depth map generation algorithm based on saliency detection for 2D to 3D conversion. 3D Research, 8, 29.CrossRefGoogle Scholar
  7. 7.
    Zhao, Y., Liu, Y., Wang, Y., Wei, B., Yang, J., Zhao, Y., et al. (2016). Region-based saliency estimation for 3D shape analysis and understanding. Neurocomputing, 197, 1–13.CrossRefGoogle Scholar
  8. 8.
    Hajizadeh, M., & Ebrahimnezhad, H. (2016). Predictive compression of animated 3D models by optimized weighted blending of key-frames. Computer Animation and Virtual Worlds, 27, 556–576.CrossRefGoogle Scholar
  9. 9.
    Agathos, A., Pratikakis, I., Perantonis, S., & Sapidis, N. S. (2010). Protrusion-oriented 3D mesh segmentation. The Visual Computer, 26, 63–81.CrossRefGoogle Scholar
  10. 10.
    Atmosukarto, I., Wilamowska, K., Heike, C., & Shapiro, L. G. (2010). 3D object classification using salient point patterns with application to craniofacial research. Pattern Recognition, 43, 1502–1517.CrossRefGoogle Scholar
  11. 11.
    Medimegh, N., Belaid, S., Atri, M, & Werghi, N. (2016). Statistical robust watermarking for 3D mesh models based on salient points. In Advanced Technologies for Signal and Image Processing (ATSIP), 2016 2nd International Conference on, pp. 52–56.Google Scholar
  12. 12.
    Mohamed, H. H., & Belaid, S. (2015). Algorithm boss (bag-of-salient local spectrums) for non-rigid and partial 3D object retrieval. Neurocomputing, 168, 790–798.CrossRefGoogle Scholar
  13. 13.
    Liu, Y., Zhang, X., Li, Z., & Li, H. (2013). Extended cone-curvature based salient points detection and 3D model retrieval. Multimedia Tools and Applications, 64, 671–693.CrossRefGoogle Scholar
  14. 14.
    Quan, L., & Tang, K. (2015). Polynomial local shape descriptor on interest points for 3D part-in-whole matching. Computer-Aided Design, 59, 119–139.CrossRefGoogle Scholar
  15. 15.
    Bronstein, A. M., Bronstein, M. M., Bustos, B., Castellani, U., Crisani, M., Falcidieno, B., Guibas, L. J., Kokkinos, I., Murino, V, & Ovsjanikov, M. (2010). SHREC 2010: Robust feature detection and description benchmark.In Proceedings of 3DOR, vol. 2, p. 6.Google Scholar
  16. 16.
    Boyer, E., Bronstein, A. M., Bronstein, M. M., Bustos, B., Darom, T., Horaud, R., Hotz, I., Keller, Y., Keustermans, J, & Kovnatsky, A. (2011). SHREC 2011: Robust feature detection and description benchmark. arXiv preprint arXiv:1102.4258.Google Scholar
  17. 17.
    Ebrahimnezhad, H., & Ghassemian, H. (2008). Robust motion from space curves and 3D reconstruction from multiviews using perpendicular double stereo rigs. Image and Vision Computing, 26, 1397–1420.CrossRefGoogle Scholar
  18. 18.
    Tombari, F., Salti, S., & Di Stefano, L. (2013). Performance evaluation of 3D keypoint detectors. International Journal of Computer Vision, 102, 198–220.CrossRefGoogle Scholar
  19. 19.
    Reuter, M., Wolter, F.-E., & Peinecke, N. (2006). Laplace–Beltrami spectra as ‘Shape-DNA’of surfaces and solids. Computer-Aided Design, 38, 342–366.CrossRefGoogle Scholar
  20. 20.
    Prakhya, S. M., Liu, B., Lin, W., Jakhetiya, V., & Guntuku, S. C. (2016). B-SHOT: A binary 3D feature descriptor for fast Keypoint matching on 3D point clouds. Autonomous Robots, pp. 1–20.Google Scholar
  21. 21.
    Chen, H., & Bhanu, B. (2007). 3D free-form object recognition in range images using local surface patches. Pattern Recognition Letters, 28, 1252–1262.CrossRefGoogle Scholar
  22. 22.
    Zhong, Y. (2009) Intrinsic shape signatures: A shape descriptor for 3d object recognition. In: Computer Vision Workshops (ICCV Workshops), 2009 IEEE 12th International Conference on, pp. 689–696.Google Scholar
  23. 23.
    Mian, A., Bennamoun, M., & Owens, R. (2010). On the repeatability and quality of keypoints for local feature-based 3d object retrieval from cluttered scenes. International Journal of Computer Vision, 89, 348–361.CrossRefGoogle Scholar
  24. 24.
    Agathos, A., Pratikakis, I., Perantonis, S., Sapidis, N., & Azariadis, P. (2007). 3D mesh segmentation methodologies for CAD applications. Computer-Aided Design and Applications, 4, 827–841.CrossRefGoogle Scholar
  25. 25.
    Katz, S., Leifman, G., & Tal, A. (2005). Mesh segmentation using feature point and core extraction. The Visual Computer, 21, 649–658.CrossRefGoogle Scholar
  26. 26.
    Lin, H.-Y. S., Liao, H.-Y. M., & Lin, J.-C. (2007). Visual salience-guided mesh decomposition. IEEE Transactions on Multimedia, 9, 46–57.CrossRefGoogle Scholar
  27. 27.
    Mirloo, M. & Ebrahimnezhad, H. (2017) Non-rigid 3D object retrieval using directional graph representation of wave kernel signature. Multimedia Tools and Applications, pp. 1–25.Google Scholar
  28. 28.
    Del Alamo, C. J. L., Calla, L. A. R., & Pérez, L. J. F. (2015). Efficient approach for interest points detection in non-rigid shapes. In Computing Conference (CLEI), 2015 Latin American, pp. 1–8.Google Scholar
  29. 29.
    Walter, N., Aubreton, O., & Laligant, O. (2008) Salient point characterization for low resolution meshes. In Image Processing, 2008, ICIP 2008. 15th IEEE International Conference on, pp. 1512–1515.Google Scholar
  30. 30.
    Sipiran, I., & Bustos, B. (2011). Harris 3D: a robust extension of the Harris operator for interest point detection on 3D meshes. The Visual Computer, 27, 963–976.CrossRefGoogle Scholar
  31. 31.
    Castellani, U., Cristani, M., Fantoni, S., & Murino, V. (2008) Sparse points matching by combining 3D mesh saliency with statistical descriptors. In Computer Graphics Forum, pp. 643–652.Google Scholar
  32. 32.
    Sun, J., Ovsjanikov, M., & Guibas, L. (2009) A concise and provably informative multi‐scale signature based on heat diffusion. In Computer graphics forum, pp. 1383–1392.Google Scholar
  33. 33.
    Chazal, F., Guibas, L. J., Oudot, S. Y., & Skraba, P. (2009). Analysis of scalar fields over point cloud data. In Proceedings of the twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1021–1030.Google Scholar
  34. 34.
    Peyré, G. (2011). The numerical tours of signal processing. Computing in Science & Engineering, 13, 94–97.CrossRefGoogle Scholar
  35. 35.
    Surazhsky, V., Surazhsky, T., Kirsanov, D., Gortler, S. J., & Hoppe, H. (2005) Fast exact and approximate geodesics on meshes. In ACM Transactions on Graphics (TOG), pp. 553–560.Google Scholar
  36. 36.
    Pears, N., Liu, Y., & Bunting, P. (2012). 3D imaging, analysis and applications vol. 3: Springer.Google Scholar

Copyright information

© 3D Research Center, Kwangwoon University and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Computer Vision Research Lab, Electrical Engineering FacultySahand University of TechnologyTabrizIran

Personalised recommendations