3D Research

, 9:3 | Cite as

Test and Verification of AES Used for Image Encryption

  • Yong Zhang
3DR Review


In this paper, an image encryption program based on AES in cipher block chaining mode was designed with C language. The encryption/decryption speed and security performance of AES based image cryptosystem were tested and used to compare the proposed cryptosystem with some existing image cryptosystems based on chaos. Simulation results show that AES can apply to image encryption, which refutes the widely accepted point of view that AES is not suitable for image encryption. This paper also suggests taking the speed of AES based image encryption as the speed benchmark of image encryption algorithms. And those image encryption algorithms whose speeds are lower than the benchmark should be discarded in practical communications.

Graphical Abstract

Image cryptosystem based on AES in CBC mode


Information security Image encryption AES—advanced encryption standard CBC—cipher block chaining 



This work was fully supported by the National Science Foundation of China (Grant Nos. 61762043 and 61562035), the Natural Science Foundation of Jiangxi Province, China (Grant No. 20161BAB202058), and the Science and Technology Project of Education Department of Jiangxi Province, China (Grant No. GJJ160426).


  1. 1.
    Westlund, H. B. (2002). NIST reports measurable success of advanced encryption standard. Journal of Research of the National Institute of Standards and Technology, 107(3), 307.CrossRefGoogle Scholar
  2. 2.
    Daemen, J., & Rijmen, V. (2001). The design of Rijndael. Information Security & Cryptography, 26(3), 137–139.zbMATHGoogle Scholar
  3. 3.
    Daemen, J., & Rijmen, V. (2002). The design of Rijndael AES-the advanced encryption standard. Berlin: Springer-Verlag.zbMATHGoogle Scholar
  4. 4.
    Zhang, Y., Li, X., & Hou, W. (2017). A fast image encryption scheme based on AES. Proceedings of ICIVC, 2, 624–2628.Google Scholar
  5. 5.
    Chen, G., Mao, Y., & Chui, C. K. (2004). A symmetric image encryption scheme based on 3D chaotic cat maps. Chaos, Solitons & Fractals, 21(3), 749–761.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Pareek, N. K., Patidar, V., & Sud, K. K. (2006). Image encryption using chaotic logistic map. Image and Vision Computing, 24(9), 926–934.CrossRefGoogle Scholar
  7. 7.
    Gao, T., & Chen, Z. (2008). A new image encryption algorithm based on hyper-chaos. Physics Letters A, 372(4), 394–400.CrossRefzbMATHGoogle Scholar
  8. 8.
    Song, C. Y., Qiao, Y. L., & Zhang, X. Z. (2013). An image encryption scheme based on new spatiotemporal chaos. Optik, 124(18), 3329–3334.CrossRefGoogle Scholar
  9. 9.
    Wang, X., Teng, L., & Qin, X. (2012). A novel colour image encryption algorithm based on chaos. Signal Processing, 92(4), 1101–1108.MathSciNetCrossRefGoogle Scholar
  10. 10.
    Liu, Z., Zhang, Y., Li, S., Liu, W., Liu, W., Wang, Y., et al. (2013). Double image encryption scheme by using random phase encoding and pixel exchanging in the gyrator transform domains. Optics & Laser Technology, 47(1), 152–158.CrossRefGoogle Scholar
  11. 11.
    Liu, Z., Li, S., Liu, W., Liu, W., & Liu, S. (2013). Image hiding scheme by use of rotating squared sub-image in the gyrator transform domains. Optics & Laser Technology, 45(1), 198–203.CrossRefGoogle Scholar
  12. 12.
    Li, C., Liu, Y., Zhang, L., & Wong, K. W. (2014). Cryptanalyzing a class of image encryption schemes based on Chinese remainder theorem. Signal Processing: Image Communication, 29(8), 914–920.Google Scholar
  13. 13.
    Liu, Y., Zhang, L., Zhang, Y., & Wong, K. W. (2015). Chosen-plaintext attack of an image encryption scheme based on modified permutation–diffusion structure. Nonlinear Dynamics, 84(4), 2241–2250.CrossRefzbMATHGoogle Scholar
  14. 14.
    Zeng, L., Liu, R., Zhang, L., & Wong, K. W. (2016). Cryptanalyzing an image encryption algorithm based on scrambling and Veginère cipher. Multimedia Tools & Applications, 75(10), 5439–5453.CrossRefGoogle Scholar
  15. 15.
    Zhang, L., Liu, Y., Wong, K. W., Pareschi, F., Zhang, Y., & Setti, G. (2017). On the security of a class of diffusion mechanisms for image encryption. IEEE Transactions on Cybernetics, 99, 1–13.Google Scholar
  16. 16.
    Hua, Z., & Zhou, Y. (2016). Image encryption using 2D Logistic-adjusted-Sine map. Information Sciences, 339, 237–253.CrossRefGoogle Scholar
  17. 17.
    Eslami, Z., & Bakhshandeh, A. (2013). An improvement over an image encryption method based on total shuffling. Optics Communications, 286(1), 51–55.CrossRefGoogle Scholar
  18. 18.
    Cheng, P., Yang, H., Wei, P., & Zhang, W. (2015). A fast image encryption algorithm based on chaotic and lookup table. Nonlinear Dynamics, 79(3), 2121–2131.CrossRefGoogle Scholar
  19. 19.
    Ünal Çavuşoǧlu, S., Kaçar, S., Pehlivan, I., & Zengin, A. (2017). Secure image encryption algorithm design using a novel chaos based S-Box. Chaos, Solitons & Fractals, 95, 92–101.CrossRefzbMATHGoogle Scholar
  20. 20.
    Ye, G., Zhao, H., & Chai, H. (2016). Chaotic image encryption algorithm using wave-line permutation and block diffusion. Nonlinear Dynamics, 83(4), 2067–2077.MathSciNetCrossRefGoogle Scholar
  21. 21.
    Zhu, H., Zhang, X., Yu, H., Zhao, C., & Zhu, Z. (2016). A novel image encryption scheme using the composite discrete chaotic system. Entropy, 18(8), 276.CrossRefGoogle Scholar
  22. 22.
    Chen, J., Zhu, Z., Fu, C., Yu, H., & Zhang, L. (2015). A fast chaos-based image encryption scheme with a dynamic state variables selection mechanism. Communications in Nonlinear Science and Numerical Simulation, 20(3), 846–860.CrossRefGoogle Scholar
  23. 23.
    Wang, X., Liu, L., & Zhang, Y. (2015). A novel chaotic block image encryption algorithm based on dynamic random growth technique. Optics and Lasers in Engineering, 66(66), 10–18.CrossRefGoogle Scholar
  24. 24.
    Assad, S. E., & Farajallah, M. (2016). A new chaos-based image encryption system. Signal Processing Image Communication, 41, 144–157.CrossRefGoogle Scholar
  25. 25.
    Zhang, X., Fan, X., Wang, J., & Zhao, Z. (2016). A chaos-based image encryption scheme using 2D rectangular transform and dependent substitution. Multimedia Tools & Applications, 75(4), 1745–1763.CrossRefGoogle Scholar
  26. 26.
    Luo, Y., Cao, L., Qiu, S., Lin, H., Harkin, J., & Liu, J. (2016). A chaotic map-control-based and the plain image-related cryptosystem. Nonlinear Dynamics, 83(4), 2293–2310.MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Farajallah, M., & Assad, S. E. (2016). Fast and secure chaos-based cryptosystem for images. International Journal of Bifurcation & Chaos, 26(2), 1650021.CrossRefzbMATHGoogle Scholar
  28. 28.
    Tong, X., Zhang, M., Wang, Z., & Ma, J. (2016). A joint color image encryption and compression scheme based on hyper-chaotic system. Nonlinear Dynamics, 84(4), 2333–2356.CrossRefGoogle Scholar
  29. 29.
    Xu, H., Tong, X., & Meng, X. (2016). An efficient chaos pseudo-random number generator applied to video encryption. Optik, 127(20), 9305–9319.CrossRefGoogle Scholar
  30. 30.
    Fawaz, Z., Noura, H., & Mostefaoui, A. (2016). An efficient and secure cipher scheme for images confidentiality preservation. Signal Processing: Image Communication, 42, 90–108.Google Scholar
  31. 31.
    Chai, X., Chen, Y., & Broyde, L. (2017). A novel chaos-based image encryption algorithm using DNA sequence operations. Optics and Lasers in Engineering, 88, 197–213.CrossRefGoogle Scholar
  32. 32.
    Chai, X., Gan, Z., Yuan, K., Lu, Y., & Chen, Y. (2017). An image encryption scheme based on three-dimensional Brownian motion and chaotic system. Chinese Physics B, 26(2), 020504.CrossRefGoogle Scholar
  33. 33.
    Shannon, C. E. (1998). Communication theory of secrecy systems, M.d.computing Computers in Medical. Practice, 15(1), 57–116.MathSciNetGoogle Scholar
  34. 34.
    Li, S., Li, C., Chen, G., Bourbakis, N. G., & Lo, K.-T. (2008). A general quantitative cryptanalysis of permutation-only multimedia ciphers against plaintext attacks. Signal Processing: Image Communication, 23(3), 212–223.Google Scholar
  35. 35.
    Jolfaei, A., Wu, X., & Muthukkumarasamy, V. (2016). On the security of permutation-only image encryption schemes. IEEE Transactions on Information Forensics and Security, 11(2), 235–246.CrossRefGoogle Scholar
  36. 36.
    Frigo, M., & Johnson, S. G. (2005). The design and implementation of FFTW3. Proceedings of the IEEE, 93(2), 216–231.CrossRefGoogle Scholar

Copyright information

© 3D Research Center, Kwangwoon University and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Software and Communication EngineeringJiangxi University of Finance and EconomicsNanchangPeople’s Republic of China

Personalised recommendations