3D Research

, 9:6 | Cite as

Efficient Hybrid Watermarking Scheme for Security and Transmission Bit Rate Enhancement of 3D Color-Plus-Depth Video Communication

  • W. El-Shafai
  • S. El-Rabaie
  • M. El-Halawany
  • F. E. Abd El-Samie
3DR Express


Three-Dimensional Video-plus-Depth (3DV + D) comprises diverse video streams captured by different cameras around an object. Therefore, there is a great need to fulfill efficient compression to transmit and store the 3DV + D content in compressed form to attain future resource bounds whilst preserving a decisive reception quality. Also, the security of the transmitted 3DV + D is a critical issue for protecting its copyright content. This paper proposes an efficient hybrid watermarking scheme for securing the 3DV + D transmission, which is the homomorphic transform based Singular Value Decomposition (SVD) in Discrete Wavelet Transform (DWT) domain. The objective of the proposed watermarking scheme is to increase the immunity of the watermarked 3DV + D to attacks and achieve adequate perceptual quality. Moreover, the proposed watermarking scheme reduces the transmission-bandwidth requirements for transmitting the color-plus-depth 3DV over limited-bandwidth wireless networks through embedding the depth frames into the color frames of the transmitted 3DV + D. Thus, it saves the transmission bit rate and subsequently it enhances the channel bandwidth-efficiency. The performance of the proposed watermarking scheme is compared with those of the state-of-the-art hybrid watermarking schemes. The comparisons depend on both the subjective visual results and the objective results; the Peak Signal-to-Noise Ratio (PSNR) of the watermarked frames and the Normalized Correlation (NC) of the extracted watermark frames. Extensive simulation results on standard 3DV + D sequences have been conducted in the presence of attacks. The obtained results confirm that the proposed hybrid watermarking scheme is robust in the presence of attacks. It achieves not only very good perceptual quality with appreciated PSNR values and saving in the transmission bit rate, but also high correlation coefficient values in the presence of attacks compared to the existing hybrid watermarking schemes.

Graphical Abstract


3D video Multimedia watermarking Homomorphic transform SVD DWT 


  1. 1.
    Tew, Y., & Wong, K. (2014). An overview of information hiding in H.264/AVC compressed video. IEEE Transactions on Circuits and Systems for Video Technology, 24(2), 305–319.CrossRefGoogle Scholar
  2. 2.
    Hartung, F., & Girod, B. (1998). Watermarking of uncompressed and compressed video. Signal Processing, 66(3), 283–301.CrossRefzbMATHGoogle Scholar
  3. 3.
    Chakareski, J. (2013). Adaptive multiview video streaming: challenges and opportunities. IEEE Communications Magazine, 51(5), 94–100.CrossRefGoogle Scholar
  4. 4.
    El-Shafai, W. (2015). Pixel-level matching based multi-hypothesis error concealment modes for wireless 3D H.264/MVC communication. 3D. Research, 6(3), 31.Google Scholar
  5. 5.
    El Shafai, W., El-Rabaie, S., El-Halawany, M., & El-Samie F. A. (2017). Enhancement of wireless 3d video communication using color-plus-depth error restoration algorithms and bayesian kalman filtering. Wireless Personal Communications, 1–24.Google Scholar
  6. 6.
    Chen, Y., & Vetro, A. (2014). Next-generation 3D formats with depth map support. IEEE Multimedia, 21(2), 90–94.CrossRefGoogle Scholar
  7. 7.
    Purica, A. I., Mora, E. G., Pesquet-Popescu, B., Cagnazzo, M., & Ionescu, B. (2016). Multiview plus depth video coding with temporal prediction view synthesis. IEEE Transactions on Circuits and Systems for Video Technology, 26(2), 360–374.CrossRefGoogle Scholar
  8. 8.
    De Abreu, A., Frossard, P., & Pereira, F. (2015). Optimizing multiview video plus depth prediction structures for interactive multiview video streaming. IEEE Journal of Selected Topics in Signal Processing, 9(3), 487–500.CrossRefGoogle Scholar
  9. 9.
    Campisi, P. (2008). Object-oriented stereo-image digital watermarking. Journal of Electronic Imaging, 17(4), 043024.CrossRefGoogle Scholar
  10. 10.
    Niu, Y., Souidene, W., & Beghdadi, A. (2011, July). A visual sensitivity model based stereo image watermarking scheme. In 2011 3rd IEEE European workshop on visual information processing (EUVIP), pp. 211–215.Google Scholar
  11. 11.
    Lin, Y. H., & Wu, J. L. (2012, March). Unseen visible watermarking for color plus depth map 3D images. In 2012 IEEE international conference on acoustics, speech and signal processing (ICASSP), pp. 1801–1804.Google Scholar
  12. 12.
    Lin, Y. H., & Wu, J. L. (2011). A digital blind watermarking for depth-image-based rendering 3D images. IEEE Transactions on Broadcasting, 57(2), 602–611.CrossRefGoogle Scholar
  13. 13.
    Kim, H. D., Lee, J. W., Oh, T. W., & Lee, H. K. (2012). Robust DT-CWT watermarking for DIBR 3D images. IEEE Transactions on Broadcasting, 58(4), 533–543.CrossRefGoogle Scholar
  14. 14.
    Khalid, A. (2017). Utilization of watermarking schemes for securing digital images. Master thesis, Department of Computer Science and Engineering, Faculty of Electronic Engineering, Menoufia University.Google Scholar
  15. 15.
    Wang, S., Cui, C., & Niu, X. (2014). Watermarking for DIBR 3D images based on SIFT feature points. Measurement, 48, 54–62.CrossRefGoogle Scholar
  16. 16.
    Franco-Contreras, J., Baudry, S., & Doërr, G. (2011, September). Virtual view invariant domain for 3D video blind watermarking. In 2011 18th IEEE international conference on image processing (ICIP), pp. 2761–2764.Google Scholar
  17. 17.
    Lee, M. J., Lee, J. W., & Lee, H. K. (2011, October). Perceptual watermarking for 3D stereoscopic video using depth information. In 2011 Seventh international conference on intelligent information hiding and multimedia signal processing (IIH-MSP), pp. 81–84.Google Scholar
  18. 18.
    Swati, S., Hayat, K., & Shahid, Z. (2014). A watermarking scheme for high efficiency video coding (HEVC). PLoS ONE, 9(8), e105613.CrossRefGoogle Scholar
  19. 19.
    Ogawa, K., & Ohtake, G. (2015, January). Watermarking for HEVC/H. 265 stream. In 2015 IEEE international conference on consumer electronics (ICCE), pp. 102–103.Google Scholar
  20. 20.
    Zhang, J., & Ho, A. T. (2006, August). Efficient video authentication for H. 264/AVC. In First international conference on innovative computing, information and control, 2006, ICICIC’06 (Vol. 3, pp. 46–49).Google Scholar
  21. 21.
    Zhang, J., Ho, A. T., Qiu, G., & Marziliano, P. (2007). Robust video watermarking of H.264/AVC. IEEE Transactions on Circuits and Systems II: Express Briefs, 54(2), 205–209.CrossRefGoogle Scholar
  22. 22.
    Qiu, G., Marziliano, P., Ho, A. T., He, D., & Sun, Q. (2004, August). A hybrid watermarking scheme for H. 264/AVC video. In Proceedings of the 17th international conference on pattern recognition, 2004. ICPR 2004 (Vol. 4, pp. 865–868).Google Scholar
  23. 23.
    Kuo, T. Y., & Lo, Y. C. (2010, March). A hybrid scheme of robust and fragile watermarking for H. 264/AVC video. In 2010 IEEE international symposium on broadband multimedia systems and broadcasting (BMSB), pp. 1–6.Google Scholar
  24. 24.
    Noorkami, M., & Mersereau, R. M. (2005, September). Compressed-domain video watermarking for H. 264. In IEEE international conference on image processing, 2005, ICIP 2005 (Vol. 2, pp. II–890).Google Scholar
  25. 25.
    Noorkami, M., & Mersereau, R. M. (2007). A framework for robust watermarking of H. 264-encoded video with controllable detection performance. IEEE Transactions on Information Forensics and Security, 2(1), 14–23.CrossRefGoogle Scholar
  26. 26.
    Noorkami, M., & Mersereau, R. M. (2008). Digital video watermarking in P-frames with controlled video bit-rate increase. IEEE Transactions on Information Forensics and Security, 3(3), 441–455.CrossRefGoogle Scholar
  27. 27.
    Esen, E., & Alatan, A. A. (2011). Robust video data hiding using forbidden zone data hiding and selective embedding. IEEE Transactions on Circuits and Systems for Video Technology, 21(8), 1130–1138.CrossRefGoogle Scholar
  28. 28.
    Xu, D., Wang, R., & Wang, J. (2011). A novel watermarking scheme for H. 264/AVC video authentication. Signal Processing: Image Communication, 26(6), 267–279.MathSciNetGoogle Scholar
  29. 29.
    Dutta, T., Sur, A., & Nandi, S. (2013, February). A robust compressed domain video watermarking in P-frames with controlled bit rate increase. In 2013 National conference on communications (NCC), pp. 1–5.Google Scholar
  30. 30.
    Stütz, T., Autrusseau, F., & Uhl, A. (2014). Non-blind structure-preserving substitution watermarking of H. 264/CAVLC inter-frames. IEEE Transactions on Multimedia, 16(5), 1337–1349.CrossRefGoogle Scholar
  31. 31.
    Su, P. C., Wu, C. S., Chen, F., Wu, C. Y., & Wu, Y. C. (2011). A practical design of digital video watermarking in H. 264/AVC for content authentication. Signal Processing: Image Communication, 26(8), 413–426.Google Scholar
  32. 32.
    Mueller, K., & Vetro, A. (2014). Common test conditions of 3D-MVV core experiments. Joint collaborative team on 3D video coding extensions JCT3V-G1100, 7th meeting, San Jose, USA.Google Scholar
  33. 33.
    WD 4 reference software for multiview video coding (mvc); August 2015.
  34. 34.
    H.264/AVC codec; September 2014.
  35. 35.
    Thind, D. K., & Jindal, S. (2015). A semi blind DWT-SVD video watermarking. Procedia Computer Science, 46, 1661–1667.CrossRefGoogle Scholar
  36. 36.
    Khalid, A., El-Sayed, M., Fathi, E., Faragallah, O. S., ELmhalawy, A., & Shehata, A. (2016). A comparative study for color systems used in the DCT-DWT watermarking algorithm. Advances in Science, Technology and Engineering Systems Journal, 1(5), 42–49.CrossRefGoogle Scholar

Copyright information

© 3D Research Center, Kwangwoon University and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • W. El-Shafai
    • 1
  • S. El-Rabaie
    • 1
  • M. El-Halawany
    • 1
  • F. E. Abd El-Samie
    • 1
  1. 1.Department of Electronics and Electrical Communications Engineering, Faculty of Electronic EngineeringMenoufia UniversityMenoufEgypt

Personalised recommendations