Skip to main content

Advertisement

Log in

Construction of Extended 3D Field of Views of the Internal Bladder Wall Surface: A Proof of Concept

  • 3DR Express
  • Published:
3D Research

Abstract

3D extended field of views (FOVs) of the internal bladder wall facilitate lesion diagnosis, patient follow-up and treatment traceability. In this paper, we propose a 3D image mosaicing algorithm guided by 2D cystoscopic video-image registration for obtaining textured FOV mosaics. In this feasibility study, the registration makes use of data from a 3D cystoscope prototype providing, in addition to each small FOV image, some 3D points located on the surface. This proof of concept shows that textured surfaces can be constructed with minimally modified cystoscopes. The potential of the method is demonstrated on numerical and real phantoms reproducing various surface shapes. Pig and human bladder textures are superimposed on phantoms with known shape and dimensions. These data allow for quantitative assessment of the 3D mosaicing algorithm based on the registration of images simulating bladder textures.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Agenant, T. M., Noordmans, H. J., Koomen, W., & Bosch, J. L. (2013). Real-time bladder lesion registration and navigation: A phantom study. PLoS One, 8(1), e54,348.

  2. Alcaraz, A. (2007). Bladder cancer: Highlights from 2006. European Urology Supplements, 6, 737–744.

    Article  Google Scholar 

  3. Ali, S., Daul, C., Galbrun, E., & Blondel, W. (2016). Illumination invariant optical flow using neighborhood descriptors. Computer Vision and Image Understanding, 145, 95–110.

    Article  Google Scholar 

  4. Ali, S., Daul, C., Galbrun, E., Guillemin, F., & Blondel, W. (2016). Anisotropic motion estimation on edge preserving Riesz wavelets for robust video mosaicing. Pattern Recognition, 51(C), 425–442.

    Article  Google Scholar 

  5. Ali, S., Daul, C., Weibel, T., & Blondel, W. (2013). Fast mosaicing of cystoscopic images from dense correspondence: Combined SURF and TV-L1 optical flow method. In 20th IEEE international conference on image processing. Melbourne, Australia, pp. 1291–1295.

  6. Behrens, A. (2008). Creating panoramic images for bladder fluorescence endoscopy. Acta Polytechnica, 48(3), 50–54.

    MathSciNet  Google Scholar 

  7. Behrens, A., Stehle, T., Gross, S., & Aach, T. (2009). Local and global panoramic imaging for fluorescence bladder endoscopy. In 31st international conference of the IEEE engineering in medicine and biology society, Minneapolis, USA, pp. 6690–6693.

  8. Behrens, A., Uski, M., Stehle, T., Gross, S., & Aach, T. (2010). Intensity based multi-scale blending for panoramic images in fluorescence endoscopy. In IEEE international symposium on biomedical imaging, Rotterdam, Netherlands, pp. 1305–1308.

  9. Ben-Hamadou, A., Daul, C., Soussen, C., Rekik, A., & Blondel, W. (2010). A novel 3D surface construction approach: Application to three-dimensional endoscopic data. In 17th IEEE international conference on image processing, Hong Kong, pp. 4425–4428.

  10. Ben-Hamadou, A., Soussen, C., Daul, C., Blondel, W., & Wolf, D. (2013). Flexible calibration of structured-light systems projecting point patterns. Computer Vision and Image Understanding, 117(10), 1468–1481.

    Article  Google Scholar 

  11. Bergen, T., & Wittenberg, T. (2016). Stitching and surface reconstruction from endoscopic image sequences: A review of applications and methods. IEEE Journal of Biomedical and Health Informatics, 20(1), 304–321.

    Article  Google Scholar 

  12. Bergen, T., Wittenberg, T., Münzenmayer, C., Chen, C. C. G., & Hager, G. D. (2013). A graph-based approach for local and global panorama imaging in cystoscopy. In Proceedings of the SPIE, medical imaging: Image-guided procedures, robotic interventions, and modeling (Vol. 8671). Lake Buena Vista, Florida, USA.

  13. Blender-Online-Community. (2014). Blender—A 3D modelling and rendering package. http://www.blender.org.

  14. Carroll, R., & Seitz, S. (2009). Rectified surface mosaics. International Journal on Computer Vision, 85(3), 307–315.

    Article  Google Scholar 

  15. Chan, M., Lin, W., Zhou, C., & Qu, J. Y. (2003). Miniaturized three-dimensional endoscopic imaging system based on active stereovision. Applied Optics, 42(10), 1888–1898.

    Article  Google Scholar 

  16. Daul, C., Rösch, R., & Claus, B. (2000). Building a color classification system for textured and hue homogeneous surfaces: System calibration and algorithm. Machine Vision and Applications, 12(3), 137–148.

    Article  Google Scholar 

  17. Hernández-Mier, Y., Blondel, W. C. P. M., Daul, C., Wolf, D., & Guillemin, F. (2010). Fast construction of panoramic images for cystoscopic exploration. Computerized Medical Imaging and Graphics, 34(7), 579–592.

    Article  Google Scholar 

  18. Holzbeierlein, J., Lopez-Corona, E., Bochner, B., Herr, H., Donat, S., Russo, P., et al. (2004). Partial cystectomy: A contemporary review of the memorial Sloan-kettering cancer center experience and recommendations for patient selection. Journal of Urology, 172(3), 878–881.

    Article  Google Scholar 

  19. Kaufman, A., & Wang, J. (2008). 3D surface reconstruction from endoscopic videos. In L. Linsen, H. Hagen, & B. Hamann (Eds.), Visualization in medicine and life sciences, mathematics and visualization (pp. 61–74). Berlin: Springer.

    Chapter  Google Scholar 

  20. Kazhdan, M., Bolitho, M., & Hoppe, H. (2006). Poisson surface reconstruction. In Fourth eurographics symposium on geometry processing, Cagliari, Italy, pp. 61–70.

  21. Miranda, R., Hernandez-Mier, Y., Daul, C., Blondel, W., & Wolf, D.(2004). Mosaicing of medical video-endoscopic images: data quality improvement and algorithm testing. In International conference on electrical and electronics engineering (ICEEE) and tenth conference on electrical engineering (CIE), Acapulco Guerrero, Mexico.

  22. Miranda-Luna, R., Daul, C., Blondel, W., Hernández-Mier, Y., Wolf, D., & Guillemin, F. (2008). Mosaicing of bladder endoscopic image sequences: Distortion calibration and registration algorithm. IEEE Transactions on Biomedical Engineering, 55(2), 541–553.

    Article  Google Scholar 

  23. Mountney, P., & Yang, G.Z. (2009). Dynamic view expansion for minimally invasive surgery using simultaneous localization and mapping. In International conference of the IEEE engineering in medicine and biology society, Minneapolis, USA, pp. 1184–1187.

  24. Nelder, J. A., & Mead, R. (1965). A simplex method for function minimization. The computer journal, 7(4), 308–313.

    Article  MathSciNet  MATH  Google Scholar 

  25. Penne, J., Höller, K., Stürmer, M., Schrauder, T., Schneider, A., Engelbrecht, R., et al. (2009). Time-of-flight 3-D endoscopy. Medical Image Computing and Computer-Assisted Intervention, 5761, 467–474.

    Google Scholar 

  26. Pluim, J., Maintz, J., & Viergever, M. (2003). Mutual-information-based registration of medical images: A survey. IEEE Trans. on Medical Imaging, 22(8), 986–1004.

    Article  MATH  Google Scholar 

  27. Shevchenko, N., Fallert, J., Stepp, H., Sahli, H., Karl, A., & Lueth, T. (2012). A high resolution bladder wall map: Feasibility study. In 34th international conference of the IEEE engineering in medicine and biology society, San Diego, CA, pp. 5761–5764.

  28. Soper, T., Porter, M., & Seibel, E. J. (2012). Surface mosaics of the bladder reconstructed from endoscopic video for automated surveillance. IEEE Transactions on Biomedical Engineering, 59(6), 1670–1680.

    Article  Google Scholar 

  29. Weibel, T., Daul, C., Wolf, D., & Rösch, R. (2012). Contrast-enhancing seam detection and blending using graph cuts. In 21st international conference on pattern recognition. Tsukuba, Japan, pp. 2732–2735.

  30. Weibel, T., Daul, C., Wolf, D., Rösch, R., & Guillemin, F. (2012). Graph based construction of textured large field of view mosaics for bladder cancer diagnosis. Pattern Recognition, 45(12), 4138–4150.

    Article  Google Scholar 

  31. Wu, C., Narasimhan, S., & Jaramaz, B. (2010). A multi-image shape-from-shading framework for near-lighting perspective endoscopes. International Journal of Computer Vision, 86(2–3), 211–228.

    Article  MathSciNet  Google Scholar 

  32. Wu, C. H., Sun, Y. N., & Chang, C. C. (2007). Three-dimensional modeling from endoscopic video using geometric constraints via feature positioning. IEEE Transactions on Biomedical Engineering, 54(7), 1199–1211.

    Article  Google Scholar 

Download references

Acknowledgments

This work was sponsored by the Région Lorraine and the Centre National de la Recherche Scientifique (CNRS) under contract PEPS Biotechno et Imagerie de la Santé. The authors would also like to thank the Centre Hospitalier Universitaire Nancy-Brabois for providing pig bladders and Prof. François Guillemin from the Institut de Cancérologie de Lorraine for his expertise in urology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Daul.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 0 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben-Hamadou, A., Daul, C. & Soussen, C. Construction of Extended 3D Field of Views of the Internal Bladder Wall Surface: A Proof of Concept. 3D Res 7, 19 (2016). https://doi.org/10.1007/s13319-016-0095-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13319-016-0095-6

Keywords

Navigation