3D Research

, 7:11 | Cite as

Robust and Blind 3D Mesh Watermarking in Spatial Domain Based on Faces Categorization and Sorting

  • Amir Masoud Molaei
  • Hossein Ebrahimnezhad
  • Mohammad Hossein Sedaaghi
3DR Express

Abstract

In this paper, a 3D watermarking algorithm in spatial domain is presented with blind detection. In the proposed method, a negligible visual distortion is observed in host model. Initially, a preprocessing is applied on the 3D model to make it robust against geometric transformation attacks. Then, a number of triangle faces are determined as mark triangles using a novel systematic approach in which faces are categorized and sorted robustly. In order to enhance the capability of information retrieval by attacks, block watermarks are encoded using Reed-Solomon block error-correcting code before embedding into the mark triangles. Next, the encoded watermarks are embedded in spherical coordinates. The proposed method is robust against additive noise, mesh smoothing and quantization attacks. Also, it is stout next to geometric transformation, vertices and faces reordering attacks. Moreover, the proposed algorithm is designed so that it is robust against the cropping attack. Simulation results confirm that the watermarked models confront very low distortion if the control parameters are selected properly. Comparison with other methods demonstrates that the proposed method has good performance against the mesh smoothing attacks.

Keywords

3D watermarking Blind detection Block codes Faces categorization and sorting Robust Reed-Solomon error-correcting codes Spatial domain 

References

  1. 1.
    Narayan, K. L., Rao, K. M., & Sarcar, M. M. M. (2008). Computer aided design and manufacturing. New Delhi: Prentice-Hall.Google Scholar
  2. 2.
    Ross, D. T. (1960). Computer-aided design: A statement of objectives. Cambridge: MIT Electronic Systems Laboratory.Google Scholar
  3. 3.
    Bustos, B., Keim, D., Saupe, D., & Schreck, T. (2007). Content-based 3d object retrieval. IEEE Transactions Computer Graphics and Applications, 27(4), 22–27.CrossRefGoogle Scholar
  4. 4.
    Tangelder, J. W. H., & Veltkamp, R. C. (2008). A survey of content based 3d shape retrieval methods. Multimedia tools and applications, 39(3), 441–471.CrossRefGoogle Scholar
  5. 5.
    Huber, D. F., & Hebert, M. (2003). Fully automatic registration of multiple 3d data sets. Image and Vision Computing, 21(7), 637–650.CrossRefGoogle Scholar
  6. 6.
    Johnson, A. E., & Bing, S. (1999). Kang. Registration and integration of textured 3d data. Image and Vision Computing, 17(2), 135–147.CrossRefGoogle Scholar
  7. 7.
    Brown, M., & Lowe, D.G. (2005). Unsupervised 3d object recognition and reconstruction in unordered datasets. In 5th Proceedings of 3-D digital imaging and modeling (pp. 56–63).Google Scholar
  8. 8.
    Mian, A.S., Bennamoun, M., & Owens, R.A. (2004). A novel algorithm for automatic 3d model-based free-form object recognition. In Proceedings of systems, man and cybernetics (pp. 6348–6353). IEEE.Google Scholar
  9. 9.
    Dugelay, J. L., Baskurt, A., & Daoudi, M. (2008). 3D Object processing: Compression, indexing and watermarking. England: Wiley.CrossRefGoogle Scholar
  10. 10.
    Yannacone, V. J, Jr. (1970). National environmental policy act of 1969. Environmental Law, 1, 8–8.Google Scholar
  11. 11.
    Park, J.H., Jeong, S.E., & Kim, C.S. (2001). Robust and fragile watermarking techniques for documents using bi-directional diagonal profiles. In Information and communications security (pp. 483–494). Berlin: Springer.Google Scholar
  12. 12.
    Piegl, L. A., & Tiller, W. (1997). The NURBS book. Berlin: Springer.CrossRefMATHGoogle Scholar
  13. 13.
    Wyvill, B., Guy, A., & Galin, E. (1999). Extending the csg tree. Warping, blending and boolean operations in an implicit surface modeling system. In Computer Graphics Forum, pp. 149–158.Google Scholar
  14. 14.
    Mao, B., & Ban, Y. (2013). Generalization of 3d building texture using image compression and multiple representation data structure. ISPRS Journal of Photogrammetry and Remote Sensing, 79, 68–79.CrossRefGoogle Scholar
  15. 15.
    Novelline, R.A. (2004). Squires’s fundamentals of radiology: La editorial. UPR.Google Scholar
  16. 16.
    Yogalakshmi, K., & Kanchana, R. (2011). Blind watermarking scheme for digital images. International Journal of Technology and Engineering Systems, 2, 276–282.Google Scholar
  17. 17.
    Ohbuchi, R., Masuda, H., & Aono, M. (1998). Watermarking three-dimensional polygonal models through geometric and topological modifications. IEEE Journal on Selected Areas in Communications, 16, 551–560.CrossRefGoogle Scholar
  18. 18.
    Yeo, B. L., & Yeung, M. M. (1999). Watermarking 3d objects for verification. IEEE Journal on Computer Graphics and Applications, 19, 36–45.Google Scholar
  19. 19.
    Chou, C. M., & Tseng, D. C. (2006). A public fragile watermarking scheme for 3d model authentication. Computer-Aided Design, 38, 1154–1165.CrossRefGoogle Scholar
  20. 20.
    Wang, W. B., Zheng, G. Q., Yong, J. H., & Gu, H. J. (2008). A numerically stable fragile watermarking scheme for authenticating 3d models. Computer-Aided Design, 40, 634–645.CrossRefGoogle Scholar
  21. 21.
    Chou, C. M., & Tseng, D. C. (2009). Affine-transformation-invariant public fragile watermarking for 3d model authentication. IEEE Journal on Computer Graphics and Applications, 29, 72–79.CrossRefGoogle Scholar
  22. 22.
    Praun, E., Hoppe, H., & Finkelstein, A. (1999). Robust mesh watermarking. In Proceedings of 26th annual Conference on computer graphics and interactive techniques (pp. 49–56).Google Scholar
  23. 23.
    Ai, Q., Liu, Q., Zhou, Z., Yang, L., & Xie, S. (2009). A new digital watermarking scheme for 3d triangular mesh models. Signal Processing, 89, 2159–2170.CrossRefMATHGoogle Scholar
  24. 24.
    Konstantinides, J. M., Mademlis, A., Daras, P., Mitkas, P. A., & Strintzis, M. G. (2009). Blind robust 3-d mesh watermarking based on oblate spheroidal harmonics. IEEE Transactions on Multimedia, 11, 23–38.CrossRefGoogle Scholar
  25. 25.
    Cai, S., & Shen, X. (2011). Octree-based robust watermarking for 3d model. Journal of Multimedia, 6, 83–90.CrossRefGoogle Scholar
  26. 26.
    Wang, K., Lavoué, G., Denis, F., & Baskurt, A. (2011). Robust and blind mesh watermarking based on volume moments. Computers & Graphics, 35, 1–19.CrossRefGoogle Scholar
  27. 27.
    Liu, C. C., Chen, J. Y., Chung, P. C., Yu, S. S., & Tsui, T. S. (2012). A three dimensional model watermarking algorithm in frequency domain based on the normalization of host models. International Journal of Innovative Computing, Information and Control, 8(5A), 3299–3314.Google Scholar
  28. 28.
    Cho, J. W., Prost, R., & Jung, H. Y. (2007). An oblivious watermarking for 3-d polygonal meshes using distribution of vertex norms. IEEE Transactions on Signal Processing, 55, 142–155.MathSciNetCrossRefGoogle Scholar
  29. 29.
    Liu, Y., Prabhakaran, B., & Guo, X. (2012). Spectral watermarking for parameterized surfaces. IEEE Transactions on Information Forensics and Security, 7, 1459–1471.CrossRefGoogle Scholar
  30. 30.
    Islam, M. R. (2010). Error correction codes in wireless sensor network: An energy aware approach. International Journal of Computer and Information Engineering, 4, 59–64.Google Scholar
  31. 31.
    Gallager, R. G. (1968). Information theory and reliable communication. New York, NY: John Wiley and Sons.MATHGoogle Scholar
  32. 32.
    Ling, S. (2004). Coding theory: A first course. New York, NY: Cambridge University Press.CrossRefGoogle Scholar
  33. 33.
    Sklar, B. (2001). Digital communications (Vol. 2). Hoboken, NJ: Prentice Hall.MATHGoogle Scholar
  34. 34.
    Rodrguez, M., Abdoulaye, S., Largeteau-Skapin, G., & Andres, E. (2010). Generalized perpendicular bisector and circumcenter. In Computational modeling of objects represented in images (pp. 1–10). Springer.Google Scholar
  35. 35.
    Hazewinkel, M. (1993). Encyclopaedia of mathematics (Vol. 2). Dordrecht: Springer.CrossRefMATHGoogle Scholar
  36. 36.
    Taubin, G. (2000). Geometric signal processing on polygonal meshes. Eurographics State of the Art Reports: Technical report.Google Scholar

Copyright information

© 3D Research Center, Kwangwoon University and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Amir Masoud Molaei
    • 2
  • Hossein Ebrahimnezhad
    • 1
  • Mohammad Hossein Sedaaghi
    • 2
  1. 1.Computer Vision Res. Lab., Electrical Eng. FacultySahand University of TechnologyTabrizIran
  2. 2.Electrical Eng. FacultySahand University of TechnologyTabrizIran

Personalised recommendations