Skip to main content
Log in

Improvements in the Visualization of Stereoscopic 3D Imagery

  • 3DR Express
  • Published:
3D Research

Abstract

A pleasant visualization of stereoscopic imagery must take into account factors that may produce eye strain and fatigue. Fortunately, our binocular vision system has embedded mechanisms to perceive depth for extended periods of time without producing eye fatigue; however, stereoscopic imagery may still induce visual discomfort in certain displaying scenarios. An important source of eye fatigue originates in the conflict between vergence eye movement and focusing mechanisms. Today’s eye-tracking technology makes possible to know the viewers’ gaze direction; hence, 3D imagery can be dynamically corrected based on this information. In this paper, I introduce a method to improve the visualization of stereoscopic imagery on planar displays based on emulating vergence and accommodation mechanisms of binocular human vision. Unlike other methods to improve the visual comfort that introduce depth distortions, in the stereoscopic visual media, this technique aims to produce a gentler and more natural binocular viewing experience without distorting the original depth of the scene.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. The range of apparent scene depths as seen by the viewer in a projected stereoscopic image/video.

  2. Alternatively, binocular depth illusion can also be achieved by watching these stereo-views using the cross-eye method, which requires locating the stereo-view a few centimeters from the eyes.

References

  1. Cassin, B., Rubin, M. L., & Solomon, S. (1984). Dictionary of eye terminology. Gainsville: Triad Publishing Company.

    Google Scholar 

  2. Lambooij, M., IJsselsteijn, W., Bouwhuis, D. G., & Heynderickx, I. (2011). Evaluation of stereoscopic images: Beyond 2D quality. IEEE Transactions on Broadcasting, 57(2), 432–444.

    Article  Google Scholar 

  3. Read, J. C. (2014). Viewer experience with stereoscopic 3D television in the home. Displays, 35(5), 252–260.

    Article  Google Scholar 

  4. Siegel, M., Tobinaga, Y., Akiya, T., Merritt, J. O., Bolas, M. T., & Fisher, S. S. (1999). Kinder, gentler stereo. Proceedinds of SPIE, 3639, 18–27.

    Article  Google Scholar 

  5. Wöpking, M. (1995). Viewing comfort with stereoscopic pictures: An experimental study on the subjective effects of disparity magnitude and depth of focus. Journal of the Society for Information Display, 3(3), 101–103.

    Article  Google Scholar 

  6. Siegel, M., & Nagata, S. (2000). Just enough reality: Comfortable 3-D viewing via microstereopsis. IEEE Transactions on Circuits and Systems for Video Technology, 10, 387–396.

    Article  Google Scholar 

  7. Gurrieri, L. E., & Dubois, E. (2014). Depth consistency and vertical disparities in stereoscopic panoramas. Journal of Electronic Imaging, 23(1), 011004. doi:10.1117/1.JEI.23.1.011004.

    Article  Google Scholar 

  8. Bando, T., Iijima, A., & Yano, S. (2012). Visual fatigue caused by stereoscopic images and the search for the requirement to prevent them: A review. Displays, 33(2), 76–83.

    Article  Google Scholar 

  9. Lambooij, M., IJsselsteijn, W., Fortuin, M., & Heynderickx, I. (2009). Visual discomfort in stereoscopic displays: A review. Journal of Imaging Science and Technology, 53(3), 030201–0302014.

    Article  Google Scholar 

  10. Howarth, P. A. (2011). Potential hazards of viewing 3-D stereoscopic television, cinema and computer games: A review. Ophthalmic and Physiological Optics, 31(2), 111–122.

    Article  Google Scholar 

  11. Hillaire S, Lécuyer, A., Cozot, R., & Casiez, G. (2008) Using an eye-tracking system to improve camera motions and depth-of-field blur effects in virtual environments (pp. 47–50). IEEE Virtual Reality Conference VR’08.

  12. Blohm, W., Beldie, I., Schenke, K., Fazel, K., & Pastoor, S. (1997). Stereoscopic image representation with synthetic depth of field. Journal of the Society for Information Display, 5(3), 307–313.

    Article  Google Scholar 

  13. Gurrieri, L. E., & Dubois, E. (2013). Stereoscopic cameras for the real-time acquisition of panoramic 3D images and videos. Proceedings of SPIE Stereoscopic Displays and Applications XXIV, 86481W, 1–17. doi:10.1117/12.2002129.

    Google Scholar 

  14. Shamir, A., & Sorkine, O. (2009). Visual media retargeting. ACM SIGGRAPH ASIA 2009 Courses, 1, 1–11.

    Article  Google Scholar 

  15. Lang, M., Hornung, A., Wang, O., Poulakos, A., Smolic, A., & Gross, M. (2010). Nonlinear disparity mapping for stereoscopic 3D. ACM Transactions on Graphics, 29(4), 75–85.

    Article  Google Scholar 

  16. Wang, O., Lang, M., Stefanoski, N., Sorkine-Hornung, A., Sorkine-Hornung, O., Smolic, A., & Gross, M. (2013) Image domain warping for stereoscopic 3D applications (pp. 207–230). Emerging Technologies for 3D Video.

  17. Subedar, M. M., & Karam, L. J. (2010) A study of relation between blur and depth in stereoscopic images (pp. 1–4). International Workshop Video Process Quality Metrics for Consumer Electronics.

  18. Sun, G., & Holliman, N. (2009) Evaluating methods for controlling depth perception in stereoscopic cinematography. Proceedings of SPIE International Society for Optics and Photonics 7237:72370I.

  19. Dias, J. M., Araujo, H., Batista, J. E., & de Almeida, A. T. (1992). Depth perception by controlling focus. Sensor Fusion IV: Control Paradigms and Data Structures, 1611, 214–224.

    Google Scholar 

  20. Leroy, L., Fuchs, P., & Moreau, G. (2010) Real-time comfort enhancement in stereoscopic displays by disparity and content-adapted blur (pp. 3595–3600). IEEE International Symposium on Industrial Electronics.

  21. Hillaire, S., Lécuyer, A., Cozot, R., & Casiez, G. (2008). Depth-of-field blur effects for first-person navigation in virtual environments. IEEE Computer Graphics and Applications, 28(6), 47–55.

    Article  Google Scholar 

  22. Blum, T., Wieczorek, M., Aichert, A., Tibrewal, R., & Navab, N. (2010) The effect of out-of-focus blur on visual discomfort when using stereo displays (pp. 13–17). IEEE International Symposium on Mixed and Augmented Reality.

  23. Sherstyuk, A., Dey, A., Sandor, C., et al. (2012). Dynamic eye convergence for head-mounted displays improves user performance in virtual environments. Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, 1, 23–30.

    Article  Google Scholar 

  24. Chen, W. C., Hsiao, F. J., & Lin, C. W. (2010) An automatic parallax adjustment method for stereoscopic augmented reality systems (pp. 215–216). IEEE International Symposium on Mixed and Augmented Reality.

  25. Bernhard, M., Dell’mour, C., Hecher, M., Stavrakis, E., & Wimmer, M. (2014) The effects of fast disparity adjustment in gaze-controlled stereoscopic applications (pp. 111–118). Proceedings of the Symposium on Eye Tracking Research and Applications.

  26. Shibata, T., Kim, J., Hoffman, D. M., & Banks, M. S. (2011). The zone of comfort: Predicting visual discomfort with stereo displays. Journal of Vision, 11(8), 1–11.

    Article  Google Scholar 

  27. Steinman, S., Steinman, B., & Garzia, R. (2000). Foundations of binocular vision: A clinical perspective. New York: McGraw-Hill Medical.

    Google Scholar 

  28. Hoffman, D. M., Girshick, A. R., Akeley, K., & Banks, M. S. (2008). Vergence-accommodation conflicts hinder visual performance and cause visual fatigue. Journal of Vision, 8(3), 1–30.

    Article  Google Scholar 

  29. Winn, B., Whitaker, D., Elliott, D. B., & Phillips, N. J. (1994). Factors affecting light-adapted pupil size in normal human subjects. Investigative Ophthalmology & Visual Science, 35(3), 1132–1137.

    Google Scholar 

  30. Soba, O. (2015). T. Enami’s stereoviews of Japan available on-line under Creative Commons: Attribution—Non-Commercial—Share Alike, 2.0. Publishing Flickr https://flic.kr/s/aHsj9paATA. Accessed 3 June 2015

  31. Enami, T. (1905). Shell Pickers at Honmoku Near Yokohama available on-line under Creative Commons: Attribution—Non-Commercial—Share Alike, 2.0. Publishing Flickr https://flic.kr/p/4wifes. Accessed 19 June 2015

  32. Ponting, H. G. (1904). Some nice stereoviews of old Meiji-era Japan—From a 100-View Set by Underwood & Underwood available on-line under Creative Commons: Attribution—Non-Commercial—Share Alike, 2.0. Publishing Flickr https://flic.kr/p/4F9NBi. Accessed 19 June 2015

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis E. Gurrieri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gurrieri, L.E. Improvements in the Visualization of Stereoscopic 3D Imagery. 3D Res 6, 25 (2015). https://doi.org/10.1007/s13319-015-0058-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13319-015-0058-3

Keywords

Navigation