Skip to main content
Log in

Images Matching Using Voronoï Regions Propagation

  • 3DR Review
  • Published:
3D Research

Abstract

This paper presents a robust dense matching algorithm based on a geometric approach Voronoï. Feature points are matched and used to divide the images (left and right) to Voronoï regions. A left Voronoï region corresponds with its right counterpart, if the sites of the two regions constitute a true matching (seed).The two regions have the same number of points, the same shape and are highly correlated. The points of the Voronoï regions which satisfy all these criteria serve as new seeds for the next iteration. The originality of our approach lies in the fact that the segmentation strategy of the image is based on the distance between the pixels and not on the intensity (colour). The results obtained from test images show that our method is robust and reduces errors due to problems of ambiguity between pixels belonging to areas with low and/or repetitive textures. It also enables us to overcome the problems of occlusions and depth discontinuities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. El Akkad, N., Merras, M., Saaidi, A., & Satori, K. (2014). Camera self-calibration with varying intrinsic parameters by an unknown three-dimensional scene. The Visual Computer, 30(5), 519–530. doi:10.1007/S00371-013-0877-2.

    Article  Google Scholar 

  2. El Hazzat, S., Saaidi, A., & Satori, K. (2014). Euclidean 3d reconstruction of unknown objects from multiple images. Journal of Emerging Technologies in Web Intelligence, 6(1), 59–63. doi:10.4304/JETWI.6.1.59-63.

    Article  Google Scholar 

  3. El Kaddouhi, S., Saaidi, A., & Abarkan, M. (2014). A new robust face detection method based on corner points. International Journal of Software Engineering and Its Applications, 8(11), 25–40. doi:10.14257/IJSEIA.2014.8.11.03.

    Google Scholar 

  4. Scharstein, D., & Szeliski, R. (2002). A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. International Journal of Computer Vision, 47(1–3), 7–42. doi:10.1023/A:1014573219977.

    Article  MATH  Google Scholar 

  5. Brown, M. Z., Burschka, D., & Hager, G. D. (2003). Advances in computational stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 25(8), 993–1008. doi:10.1109/TPAMI.2003.1217603.

    Article  Google Scholar 

  6. Hirschmuller, H., & Scharstein, D. (2007). Evaluation of cost functions for stereo matching. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (pp. 1–8). doi:10.1109/CVPR.2007.383248.

  7. Szeliski, R., & Scharstein, D. (2002). Symmetric sub-pixel stereo matching. European Conference on Computer Vision, 2351, 525–540. doi:10.1007/3-540-47967-8_35.

    Google Scholar 

  8. Chen, Q., & Medioni, G. (1999). A volumetric stereo matching method: application to image-based modeling. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1, 29–34. doi:10.1109/CVPR.1999.786913.

    Google Scholar 

  9. Lhuillier, M., & Long, Q. (2002). Match propagation for image-based modeling and rendering. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 24(8), 1140–1146. doi:10.1109/TPAMI.2002.1023810.

    Article  Google Scholar 

  10. Ma, Y., & Liu, W. (2005). Progressive matching based on segmentation for 3d reconstruction. Computer and Information Technology (CIT), 2, 575–579. doi:10.1109/CIT.2005.157.

    Google Scholar 

  11. Zhang, Z., & Shan, Y. (2001). A progressive scheme for stereo matching. 3D Structure from Multiple Images of Large-Scale Environments (SMILE), 2018, 68–85. doi:10.1007/3-540-45296-6_5.

    Google Scholar 

  12. Gales, G., Chambon, S., Crouzil, A., & McDonald, J. (2012). Reliability measure for propagation-based stereo matching. International Workshop on Image Analysis for Multimedia Interactive Services (WIAMIS), 7, 1–4. doi:10.1109/WIAMIS.2012.6226761.

    Google Scholar 

  13. Chambon, S., & Crouzil, A. (2011). Similarity measures for image matching despite occlusions in stereo vision. Pattern Recognition, 44(9), 2063–2075. doi:10.1016/J.patcog.2011.02.001.

    Article  Google Scholar 

  14. Kanade, T., & Okutomi, M. (1994). A stereo matching algorithm with an adaptive window: Theory and experiment. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 16(9), 920–932. doi:10.1109/34.310690.

    Article  Google Scholar 

  15. Veksler, O. (2003). Fast variable window for stereo correspondence using integral images. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1, 556–561. doi:10.1109/CVPR.2003.1211403.

    Google Scholar 

  16. Yoon, K.-J., & Kweon, I. S. (2006). Adaptive support-weight approach for correspondence search. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 28(4), 650–656. doi:10.1109/TPAMI.2006.70.

    Article  Google Scholar 

  17. Tombari, F., Mattoccia, S., & Di Stefano, L. (2007). Segmentation-based adaptive support for accurate stereo correspondence. Pacific-Rim Symposium on Image and Video Technology (PSIVT), 4872, 427–438. doi:10.1007/978-3-540-77129-6_38.

    Google Scholar 

  18. Hosni, A., Bleyer, M., Gelautz, M., & Rhemann, C. (2009). Local stereo matching using geodesic support weights. IEEE Conference on Image Processing (ICIP), 1406, 2093–2096. doi:10.1109/ICIP.2009.5414478.

    Google Scholar 

  19. Hosni, A., Bleyer, M., & Gelautz, M. (2013). Secrets of adaptive support weight techniques for local stereo matching. Computer Vision and Image Understanding (CVIU), 117(6), 620–632. doi:10.1016/j.cviu.2013.01.007.

    Article  Google Scholar 

  20. Monga, O. (1987). An optimal region growing algorithm for image segmentation. International Journal of Pattern Recognition and Artificial Intelligence, 1(3), 351–376. doi:10.1142/S0218001487000242.

    Article  Google Scholar 

  21. Kannala, J., & Brandt, S.S.(2007) Quasi-dense wide baseline matching using match propagation. IEEE Conference on Computer Vision and Pattern Recognition (CVPR),(pp. 1–8). doi:10.1109/CVPR.2007.383247.

  22. Zhang, H., & Negahdaripour, S. (2005). Fast and robust progressive stereo reconstruction by symmetry guided fusion Oceans 2005 -. Europe, 1, 551–556. doi:10.1109/OCEANSE.2005.1511774.

    Google Scholar 

  23. Sun, J., Zheng, N.-N., & Shum, H.-Y. (2003). Stereo matching using belief propagation. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 25(7), 787–800. doi:10.1109/TPAMI.2003.1206509.

    Article  Google Scholar 

  24. Veksler, O. (1999) Efficient graph-based energy minimization methods in computer vision. Ph.D. thesis, Cornell University, Ithaca, NY.

  25. Park, J., Kim, W., & Lee, K. M. (2007). Stereo matching using population-based MCMC. Asian Conference on Computer Vision (ACCV), 4844, 560–569. doi:10.1007/978-3-540-76390-1_55.

    Google Scholar 

  26. Gong, M., Yang, & Y.-H. (2001) Multi-resolution stereo matching using genetic algorithm. IEEE Workshop on Stereo and Multi-Baseline Vision (SMBV), (pp. 21–29). doi:10.1109/SMBV.2001.988759.

  27. Ohta, Y., & Kanade, T. (1985). Stereo by intra- and inter-scanline search using dynamic programming. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 7(2), 139–154. doi:10.1109/TPAMI.1985.4767639.

    Article  Google Scholar 

  28. http://vision.middlebury.edu/stereo/data/.

  29. Tao, H., Sawhney, H. S., & Kumar, R. (2001). A global matching famework for stereo computation. IEEE International Conference on Computer Vision (ICCV), 1, 532–539. doi:10.1109/ICCV.2001.937562.

    Google Scholar 

  30. Hong, L., & Chen, G. (2004). Segment-based stereo matching using graph cuts. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1, 74–81. doi:10.1109/CVPR.2004.1315016.

    Google Scholar 

  31. Wei, Y., & Quan, L. (2004). Region-based progressive stereo matching. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1, 106–113. doi:10.1109/CVPR.2004.1315020.

    Google Scholar 

  32. Yang, Q., Wang, L., Yang, R., Stewénius, H., & Nistér, D. (2009). Stereo matching with color-weighted correlation, hierarchical belief propagation, and occlusion handling. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 31(3), 492–504. doi:10.1109/TPAMI.2008.99.

    Article  Google Scholar 

  33. Klaus, A., Sormann, M., & Karner, K. (2006). Segment-based stereo matching using belief propagation and a self-adapting dissimilarity measure. International Conference on Pattern Recognition (ICPR), 3, 15–18. doi:10.1109/ICPR.2006.1033.

    Article  Google Scholar 

  34. Yang, Q., Yang, R., Davis, J., & Nister, D. (2007). Spatial-depth super resolution for range images. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 5006, 1–8. doi:10.1109/CVPR.2007.383211.

    Google Scholar 

  35. Wang, Z.-F., & Zheng, Z.-G. (2008). A region based stereo matching algorithm using cooperative optimization. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1, 1–8. doi:10.1109/CVPR.2008.4587456.

    Google Scholar 

  36. Xu, L., & Jia, J. (2008). Stereo matching: an outlier confidence approach. European Conference on Computer Vision (ECCV), 5305, 775–787. doi:10.1007/978-3-540-88693-8_57.

    Google Scholar 

  37. Bleyer, M., Gelautz, M., Rother, C., & Rhemann, C. (2009). A stereo approach that handles the matting problem via image warping. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2, 501–508. doi:10.1109/CVPR.2009.5206656.

    Google Scholar 

  38. Bleyer, M., Rother, C., & Kohli, P. (2010). Surface stereo with soft segmentation. Computer Vision and Pattern Recognition (CVPR), 24, 1570–1577. doi:10.1109/CVPR.2010.5539783.

    Google Scholar 

  39. Bleyer, M., Rother, C., Kohli, P., Scharstein, D., & Sinha, S. (2011). Object stereo - joint stereo matching and object segmentation. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 12, 3081–3088. doi:10.1109/CVPR.2011.5995581.

    Google Scholar 

  40. Marr, D., & Poggio, T. (1991). Cooperative computation of stereo disparity. Boston: From the Retina to the Neocortex. Birkhäuser.

    Google Scholar 

  41. Roy, S., & Cox, I. J. (1998). A maximum-flow formulation of the N-camera stereo correspondence problem. IEEE International Conference on Computer Vision (ICCV), 1, 492–499. doi:10.1109/ICCV.1998.710763.

    Article  Google Scholar 

  42. Cox, I. J., Hingorani, S. L., Rao, S. B., & Maggs, B. M. (1996). A maximum likelihood stereo algorithm. Computer Vision and Image Understanding (CVIU), 63(3), 542–567. doi:10.1006/CVIU.1996.0040.

    Article  Google Scholar 

  43. Boykov, Y., Veksler, O., & Zabih, R. (2001). Fast approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 23(11), 1222–1239. doi:10.1109/34.969114.

    Article  Google Scholar 

  44. Kolmogorov, V., & Zabih, R. (2001). Computing visual correspondence with occlusions using graph cuts. IEEE International Conference on Computer Vision (ICCV), 2, 508–515. doi:10.1109/ICCV.2001.937668.

    Google Scholar 

  45. Zhu, S., Zhang, L., & Jin, H. (2012). Locally linear regression model for boundary preserving regularization in stereo matching. European Conference on Computer Vision (ECCV), 5, 101–115. doi:10.1007/978-3-642-33715-4_8.

    Google Scholar 

  46. Harris, C., & Stephens, M. (1988). A combined corner and edge detector. Alvey Vision Conference (AVC), (pp. 147–151). doi:10.5244/C.2.23.

  47. Shi, J., & Tomasi, C. (1994). Good features to track. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2, 593–600. doi:10.1109/CVPR.1994.323794.

    Google Scholar 

  48. Noble, J. A. (1988). Finding corners. Image and Vision Computing, 6(2), 121–128. doi:10.1016/0262-8856(88)90007-8.

    Article  Google Scholar 

  49. Ahuja, N., An, B., & Schachter, B. (1985). Image representation using Voronoï tessellation. Computer Vision, Graphics, and Image Processing, 29(3), 286–295. doi:10.1016/0734-189X(85)90126-4.

    Article  Google Scholar 

  50. Tuceryan, M., & Jain, A. K. (1990). Texture segmentation using Voronoï polygons. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 12(2), 211–216. doi:10.1109/34.44407.

    Article  Google Scholar 

  51. Klein, R., Langetepe, E., & Nilforoushan, Z. (2009). Abstract Voronoi diagrams revisited. Computational Geometry, 42(9), 885–902. doi:10.1016/J.COMGEO.2009.03.002.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Laraqui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laraqui, M., Saaidi, A., Mouhib, A. et al. Images Matching Using Voronoï Regions Propagation. 3D Res 6, 27 (2015). https://doi.org/10.1007/s13319-015-0056-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13319-015-0056-5

Keywords

Navigation