Skip to main content
Log in

Population Pharmacokinetic Analysis for Model-Based Therapeutic Drug Monitoring of Tacrolimus in Chinese Han Heart Transplant Patients

  • Original Research Article
  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background and Objective

Tacrolimus has become the first-line immunosuppressant for preventing rejection after heart transplantation. The present study aimed to investigate genetic variants and clinical factors affecting the variability of tacrolimus in Chinese Han heart transplant patients using a population pharmacokinetic approach.

Methods

The retrospective study included 53 hospitalized patients with 547 tacrolimus concentrations for analysis. Nonlinear mixed-effects modeling was used to develop the population pharmacokinetics model for tacrolimus in patients with heart transplants, followed by Monte Carlo simulations to design initial dosing regimens.

Results

In our study, the mutation rate of CYP3A4*18B (C>T) was 27.36%. An oral one-compartment model with first-order absorption and elimination was used to describe the pharmacokinetics of tacrolimus in heart transplant patients. In the final model, the estimated apparent clearance (CL/F) and volume of distribution (V/F) were 532.5 L/h [12.20% interindividual variability, IIV] and 16.87 L (23.16% IIV), respectively. Albumin, postoperative time, and rs2242480 (CYP3A4*18B) gene polymorphisms were the significant covariates affecting CL/F, and creatinine clearance had significant effects on the V/F.

Conclusion

The population pharmacokinetic model of tacrolimus in heart transplant patients can better estimate the population and individual pharmacokinetic parameters of patients and can provide a reference for the design of individualized dosing regimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Khush KK, Hsich E, Potena L, Cherikh WS, Chambers DC, Harhay MO, et al. The International Thoracic Organ Transplant Registry of the International Society for Heart and Lung Transplantation: thirty-eighth adult heart transplantation report—2021; focus on recipient characteristics. J Heart Lung Transplant. 2021;40(10):1035–49. https://doi.org/10.1016/j.healun.2021.07.015.

    Article  Google Scholar 

  2. Scalea JR, Levi ST, Ally W, Brayman KL. Tacrolimus for the prevention and treatment of rejection of solid organ transplants. Expert Rev Clin Immunol. 2016;12(3):333–42. https://doi.org/10.1586/1744666x.2016.1123093.

    Article  CAS  Google Scholar 

  3. Sikma MA, van Maarseveen EM, van de Graaf EA, Kirkels JH, Verhaar MC, Donker DW, et al. Pharmacokinetics and toxicity of tacrolimus early after heart and lung transplantation. Am J Transplant. 2015;15(9):2301–13. https://doi.org/10.1111/ajt.13309.

    Article  CAS  Google Scholar 

  4. Regazzi MB, Rinaldi M, Molinaro M, Pellegrini C, Calvi M, Arbustini E, et al. Clinical pharmacokinetics of tacrolimus in heart transplant recipients. Ther Drug Monit. 1999;21(1):2–7. https://doi.org/10.1097/00007691-199902000-00002.

    Article  CAS  Google Scholar 

  5. Sikma MA, Hunault CC, Van Maarseveen EM, Huitema ADR, Van de Graaf EA, Kirkels JH, et al. High variability of whole-blood tacrolimus pharmacokinetics early after thoracic organ transplantation. Eur J Drug Metab Pharmacokinet. 2020;45(1):123–34. https://doi.org/10.1007/s13318-019-00591-7.

    Article  CAS  Google Scholar 

  6. Sikma MA, Hunault CC, Huitema ADR, De Lange DW, Van Maarseveen EM. Clinical pharmacokinetics and impact of hematocrit on monitoring and dosing of tacrolimus early after heart and lung transplantation. Clin Pharmacokinet. 2020;59(4):403–8. https://doi.org/10.1007/s40262-019-00846-1.

    Article  CAS  Google Scholar 

  7. Brunet M, van Gelder T, Åsberg A, Haufroid V, Hesselink DA, Langman L, et al. Therapeutic drug monitoring of tacrolimus-personalized therapy: second consensus report. Ther Drug Monit. 2019;41(3):261–307. https://doi.org/10.1097/ftd.0000000000000640.

    Article  CAS  Google Scholar 

  8. Wang DD, Chen X, Fu M, Zheng QS, Xu H, Li ZP. Model extrapolation to a real-world dataset: evaluation of tacrolimus population pharmacokinetics and drug interaction in pediatric liver transplantation patients. Xenobiotica. 2020;50(4):371–9. https://doi.org/10.1080/00498254.2019.1631505.

    Article  CAS  Google Scholar 

  9. Hannachi I, Ben Fredj N, Chadli Z, Ben Fadhel N, Ben Romdhane H, Touitou Y, et al. Effect of CYP3A4*22 and CYP3A4*1B but not CYP3A5*3 polymorphisms on tacrolimus pharmacokinetic model in Tunisian kidney transplant. Toxicol Appl Pharmacol. 2020;396: 115000. https://doi.org/10.1016/j.taap.2020.115000.

    Article  CAS  Google Scholar 

  10. Rong Y, Mayo P, Ensom MHH, Kiang TKL. Population pharmacokinetics of mycophenolic acid co-administered with tacrolimus in corticosteroid-free adult kidney transplant patients. Clin Pharmacokinet. 2019;58(11):1483–95. https://doi.org/10.1007/s40262-019-00771-3.

    Article  CAS  Google Scholar 

  11. Lu Z, Bonate P, Keirns J. Population pharmacokinetics of immediate- and prolonged-release tacrolimus formulations in liver, kidney and heart transplant recipients. Br J Clin Pharmacol. 2019;85(8):1692–703. https://doi.org/10.1111/bcp.13952.

    Article  CAS  Google Scholar 

  12. Martial LC, Biewenga M, Ruijter BN, Keizer R, Swen JJ, van Hoek B, et al. Population pharmacokinetics and genetics of oral meltdose tacrolimus (Envarsus) in stable adult liver transplant recipients. Br J Clin Pharmacol. 2021;87(11):4262–72. https://doi.org/10.1111/bcp.14842.

    Article  CAS  Google Scholar 

  13. Chen X, Wang DD, Xu H, Li ZP. Population pharmacokinetics and pharmacogenomics of tacrolimus in Chinese children receiving a liver transplant: initial dose recommendation. Transl Pediatr. 2020;9(5):576–86. https://doi.org/10.21037/tp-20-84.

    Article  Google Scholar 

  14. Yang CL, Sheng CC, Liao GY, Su Y, Feng LJ, Xia Q, et al. Genetic polymorphisms in metabolic enzymes and transporters have no impact on mycophenolic acid pharmacokinetics in adult kidney transplant patients co-treated with tacrolimus: a population analysis. J Clin Pharm Ther. 2021;46(6):1564–75. https://doi.org/10.1111/jcpt.13488.

    Article  CAS  Google Scholar 

  15. Zhang HJ, Li DY, Zhu HJ, Fang Y, Liu TS. Tacrolimus population pharmacokinetics according to CYP3A5 genotype and clinical factors in Chinese adult kidney transplant recipients. J Clin Pharm Ther. 2017;42(4):425–32. https://doi.org/10.1111/jcpt.12523.

    Article  CAS  Google Scholar 

  16. Gong Y, Yang M, Sun Y, Li J, Lu Y, Li X. Population pharmacokinetic analysis of tacrolimus in Chinese cardiac transplant recipients. Eur J Hosp Pharm. 2020;27(e1):e12–8. https://doi.org/10.1136/ejhpharm-2018-001764.

    Article  Google Scholar 

  17. Han Y, Zhou H, Cai J, Huang J, Zhang J, Shi SJ, et al. Prediction of tacrolimus dosage in the early period after heart transplantation: a population pharmacokinetic approach. Pharmacogenomics. 2019;20(1):21–35. https://doi.org/10.2217/pgs-2018-0116.

    Article  CAS  Google Scholar 

  18. Rower JE, Stockmann C, Linakis MW, Kumar SS, Liu X, Korgenski EK, et al. Predicting tacrolimus concentrations in children receiving a heart transplant using a population pharmacokinetic model. BMJ Paediatr Open. 2017;1(1): e000147. https://doi.org/10.1136/bmjpo-2017-000147.

    Article  Google Scholar 

  19. Kirubakaran R, Hennig S, Maslen B, Day RO, Carland JE, Stocker SL. Evaluation of published population pharmacokinetic models to inform tacrolimus dosing in adult heart transplant recipients. Br J Clin Pharmacol. 2022;88(4):1751–72. https://doi.org/10.1111/bcp.15091.

    Article  CAS  Google Scholar 

  20. Li L, Li CJ, Zheng L, Zhang YJ, Jiang HX, Si-Tu B, et al. Tacrolimus dosing in Chinese renal transplant recipients: a population-based pharmacogenetics study. Eur J Clin Pharmacol. 2011;67(8):787–95. https://doi.org/10.1007/s00228-011-1010-y.

    Article  CAS  Google Scholar 

  21. Wang P, Mao Y, Razo J, Zhou X, Wong ST, Patel S, et al. Using genetic and clinical factors to predict tacrolimus dose in renal transplant recipients. Pharmacogenomics. 2010;11(10):1389–402. https://doi.org/10.2217/pgs.10.105.

    Article  CAS  Google Scholar 

  22. Kamdem LK, Streit F, Zanger UM, Brockmöller J, Oellerich M, Armstrong VW, et al. Contribution of CYP3A5 to the in vitro hepatic clearance of tacrolimus. Clin Chem. 2005;51(8):1374–81. https://doi.org/10.1373/clinchem.2005.050047.

    Article  CAS  Google Scholar 

  23. Hebert MF. Contributions of hepatic and intestinal metabolism and P-glycoprotein to cyclosporine and tacrolimus oral drug delivery. Adv Drug Deliv Rev. 1997;27(2–3):201–14. https://doi.org/10.1016/s0169-409x(97)00043-4.

    Article  CAS  Google Scholar 

  24. Liu S, Chen RX, Li J, Zhang Y, Wang XD, Fu Q, et al. The POR rs1057868-rs2868177 GC-GT diplotype is associated with high tacrolimus concentrations in early post-renal transplant recipients. Acta Pharmacol Sin. 2016;37(9):1251–8. https://doi.org/10.1038/aps.2016.77.

    Article  CAS  Google Scholar 

  25. Gu X, Ke S, Liu D, Sheng T, Thomas PE, Rabson AB, et al. Role of NF-kappaB in regulation of PXR-mediated gene expression: a mechanism for the suppression of cytochrome P-450 3A4 by proinflammatory agents. J Biol Chem. 2006;281(26):17882–9. https://doi.org/10.1074/jbc.M601302200.

    Article  CAS  Google Scholar 

  26. Lunde I, Bremer S, Midtvedt K, Mohebi B, Dahl M, Bergan S, et al. The influence of CYP3A, PPARA, and POR genetic variants on the pharmacokinetics of tacrolimus and cyclosporine in renal transplant recipients. Eur J Clin Pharmacol. 2014;70(6):685–93. https://doi.org/10.1007/s00228-014-1656-3.

    Article  CAS  Google Scholar 

  27. Zhang X, Wang Z, Fan J, Liu G, Peng Z. Impact of interleukin-10 gene polymorphisms on tacrolimus dosing requirements in Chinese liver transplant patients during the early posttransplantation period. Eur J Clin Pharmacol. 2011;67(8):803–13. https://doi.org/10.1007/s00228-011-0993-8.

    Article  CAS  Google Scholar 

  28. Seyhun Y, Ciftci HS, Kekik C, Karadeniz MS, Tefik T, Nane I, et al. Genetic association of interleukin-2, interleukin-4, interleukin-6, transforming growth factor-β, tumour necrosis factor-α and blood concentrations of calcineurin inhibitors in Turkish renal transplant patients. Int J Immunogenet. 2015;42(3):147–60. https://doi.org/10.1111/iji.12192.

    Article  CAS  Google Scholar 

  29. Lu T, Zhu X, Xu S, Zhao M, Huang X, Wang Z, et al. Dosage optimization based on population pharmacokinetic analysis of tacrolimus in Chinese patients with nephrotic syndrome. Pharm Res. 2019;36(3):45. https://doi.org/10.1007/s11095-019-2579-6.

    Article  CAS  Google Scholar 

  30. Toiyama Y, Okugawa Y, Tanaka K, Araki T, Uchida K, Hishida A, et al. A panel of methylated microRNA biomarkers for identifying high-risk patients with ulcerative colitis-associated colorectal cancer. Gastroenterology. 2017;153(6):1634-46.e8. https://doi.org/10.1053/j.gastro.2017.08.037.

    Article  CAS  Google Scholar 

  31. Sheiner LB, Beal SL. Some suggestions for measuring predictive performance. J Pharmacokinet Biopharm. 1981;9(4):503–12. https://doi.org/10.1007/bf01060893.

    Article  CAS  Google Scholar 

  32. Kirubakaran R, Stocker SL, Hennig S, Day RO, Carland JE. Population pharmacokinetic models of tacrolimus in adult transplant recipients: a systematic review. Clin Pharmacokinet. 2020;59(11):1357–92. https://doi.org/10.1007/s40262-020-00922-x.

    Article  CAS  Google Scholar 

  33. Ogawa R, Stachnik JM, Echizen H. Clinical pharmacokinetics of drugs in patients with heart failure: an update (part 2, drugs administered orally). Clin Pharmacokinet. 2014;53(12):1083–114. https://doi.org/10.1007/s40262-014-0189-3.

    Article  CAS  Google Scholar 

  34. Cheng F, Li Q, Wang J, Hu M, Zeng F, Wang Z, et al. Genetic polymorphisms affecting tacrolimus metabolism and the relationship to post-transplant outcomes in kidney transplant recipients. Pharmgenomics Pers Med. 2021;14:1463–74. https://doi.org/10.2147/pgpm.s337947.

    Article  CAS  Google Scholar 

  35. Guy-Viterbo V, Scohy A, Verbeeck RK, Reding R, Wallemacq P, Musuamba FT. Population pharmacokinetic analysis of tacrolimus in the first year after pediatric liver transplantation. Eur J Clin Pharmacol. 2013;69(8):1533–42. https://doi.org/10.1007/s00228-013-1501-0.

    Article  CAS  Google Scholar 

  36. Bergmann TK, Hennig S, Barraclough KA, Isbel NM, Staatz CE. Population pharmacokinetics of tacrolimus in adult kidney transplant patients: impact of CYP3A5 genotype on starting dose. Ther Drug Monit. 2014;36(1):62–70. https://doi.org/10.1097/FTD.0b013e31829f1ab8.

    Article  CAS  Google Scholar 

  37. Chen B, Shi HQ, Liu XX, Zhang WX, Lu JQ, Xu BM, et al. Population pharmacokinetics and Bayesian estimation of tacrolimus exposure in Chinese liver transplant patients. J Clin Pharm Ther. 2017;42(6):679–88. https://doi.org/10.1111/jcpt.12599.

    Article  CAS  Google Scholar 

  38. Jalil MH, Hawwa AF, McKiernan PJ, Shields MD, McElnay JC. Population pharmacokinetic and pharmacogenetic analysis of tacrolimus in paediatric liver transplant patients. Br J Clin Pharmacol. 2014;77(1):130–40. https://doi.org/10.1111/bcp.12174.

    Article  CAS  Google Scholar 

  39. Genvigir FD, Salgado PC, Felipe CR, Luo EY, Alves C, Cerda A, et al. Influence of the CYP3A4/5 genetic score and ABCB1 polymorphisms on tacrolimus exposure and renal function in Brazilian kidney transplant patients. Pharmacogenet Genomics. 2016;26(10):462–72. https://doi.org/10.1097/fpc.0000000000000237.

    Article  CAS  Google Scholar 

  40. Hesselink DA, van Schaik RH, van der Heiden IP, van der Werf M, Gregoor PJ, Lindemans J, et al. Genetic polymorphisms of the CYP3A4, CYP3A5, and MDR-1 genes and pharmacokinetics of the calcineurin inhibitors cyclosporine and tacrolimus. Clin Pharmacol Ther. 2003;74(3):245–54. https://doi.org/10.1016/s0009-9236(03)00168-1.

    Article  CAS  Google Scholar 

  41. Qiu XY, Jiao Z, Zhang M, Zhong LJ, Liang HQ, Ma CL, et al. Association of MDR1, CYP3A4*18B, and CYP3A5*3 polymorphisms with cyclosporine pharmacokinetics in Chinese renal transplant recipients. Eur J Clin Pharmacol. 2008;64(11):1069–84. https://doi.org/10.1007/s00228-008-0520-8.

    Article  CAS  Google Scholar 

  42. Tamashiro EY, Felipe CR, Genvigir FDV, Rodrigues AC, Campos AB, Hirata RDC, et al. Influence of CYP3A4 and CYP3A5 polymorphisms on tacrolimus and sirolimus exposure in stable kidney transplant recipients. Drug Metab Pers Ther. 2017;32(2):89–95. https://doi.org/10.1515/dmpt-2016-0036.

    Article  CAS  Google Scholar 

  43. Liu F, Ou YM, Yu AR, Xiong L, Xin HW. Long-term influence of CYP3A5, CYP3A4, ABCB1, and NR1I2 polymorphisms on tacrolimus concentration in Chinese renal transplant recipients. Genet Test Mol Biomarkers. 2017;21(11):663–73. https://doi.org/10.1089/gtmb.2017.0088.

    Article  CAS  Google Scholar 

  44. Staatz CE, Tett SE. Clinical pharmacokinetics and pharmacodynamics of tacrolimus in solid organ transplantation. Clin Pharmacokinet. 2004;43(10):623–53. https://doi.org/10.2165/00003088-200443100-00001.

    Article  CAS  Google Scholar 

  45. Costanzo MR, Dipchand A, Starling R, Anderson A, Chan M, Desai S, et al. The International Society of Heart and Lung Transplantation Guidelines for the care of heart transplant recipients. J Heart Lung Transplant. 2010;29(8):914–56. https://doi.org/10.1016/j.healun.2010.05.034.

    Article  Google Scholar 

  46. Hsu CY, Bates DW, Kuperman GJ, Curhan GC. Relationship between hematocrit and renal function in men and women. Kidney Int. 2001;59(2):725–31. https://doi.org/10.1046/j.1523-1755.2001.059002725.x.

    Article  CAS  Google Scholar 

  47. Comets E, Brendel K, Mentré F. Computing normalised prediction distribution errors to evaluate nonlinear mixed-effect models: the npde add-on package for R. Comput Methods Programs Biomed. 2008;90(2):154–66. https://doi.org/10.1016/j.cmpb.2007.12.002.

    Article  Google Scholar 

  48. Yan-xia, Lu Qing-hong, Su Ke-hua, Wu Yu-peng, Ren Liang, Li Tian-yan, Zhou Wei, Lu (2015) A population pharmacokinetic study of tacrolimus in healthy Chinese volunteers and liver transplant patients. Acta Pharmacologica Sinica 36(2) 281-288 https://doi.org/10.1038/aps.2014.110

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongqiang Qiu or Jinhua Zhang.

Ethics declarations

Funding

This work was supported by grants from the Natural Science Foundation of Fujian Province of China (grant no. 2018Y0037, 2021J01761), Fujian Medical Innovation Project (grant no. 2019-CX-19), and Startup Fund for scientific research, Fujian Medical University (grant no. 2019QH1269).

Conflict of interest

The authors report no conflicts of interest.

Ethics approval

This retrospective study involves human participants who were following the ethical standards of the institutional and national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. The Ethics Committee of Fujian Medical University Union Hospital (2020YF022-01) approved this study.

Consent to participate

Informed consent was obtained from the study participants before study commencement.

Consent to publish

Not applicable.

Author contribution

Conceptualization: Y.C., H.Q., and J.Z. Methodology: Y.C. and X.L. Data curation: Y.C., X.L., and J.C. Formal analysis and investigation: Y.C. and J.C. Writing: Y.C. Supervision: H.Q. and J.Z.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

The coding for this study is available from the corresponding author upon reasonable request.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 305 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Y., Chen, J., Lin, X. et al. Population Pharmacokinetic Analysis for Model-Based Therapeutic Drug Monitoring of Tacrolimus in Chinese Han Heart Transplant Patients. Eur J Drug Metab Pharmacokinet 48, 89–100 (2023). https://doi.org/10.1007/s13318-022-00807-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13318-022-00807-3

Navigation