Skip to main content

Advertisement

Log in

Changes of Drug Pharmacokinetics in Patients with Short Bowel Syndrome: A Systematic Review

  • Systematic Review
  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

A Letter to Editor to this article was published on 05 October 2021

A Letter to the Editor to this article was published on 07 September 2021

Abstract

Background and Objectives

Short bowel syndrome is a clinical condition defined by malabsorption of nutrients and micronutrients, most commonly following extensive intestinal resection. Due to a loss of absorptive surfaces, the absorption of orally administered drugs is also often affected. The purpose of this study was to systematically review the published literature and examine the effects of short bowel syndrome on drug pharmacokinetics and clinical outcomes.

Methods

Studies were identified through searches of databases MEDLINE, EMBASE, Web of Science, and SCOPUS, in addition to hand searches of studies’ reference lists. Two reviewers independently assessed studies for inclusion, yielding 50 studies involving 37 different drugs in patients with short bowel syndrome.

Results

Evidence of decreased drug absorption was observed in 29 out of 37 drugs, 6 of which lost therapeutic effect, and 14 of which continued to demonstrate clinical benefit through drug monitoring.

Conclusions

The influence of short bowel syndrome on drug absorption appears to be drug-specific and dependent on the location and extent of resection. The presence of a colon in continuity may also influence drug bioavailability as it can contribute significantly to the absorption of drugs (e.g., metoprolol); likewise, drugs that have a wide absorption window or are known to be absorbed in the colon are least likely to be malabsorbed. Individualized dosing may be necessary to achieve therapeutic efficacy, and therapeutic drug monitoring, where available, should be considered in short bowel syndrome patients, especially for drugs with narrow therapeutic indices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Buchman AL, Scolapio J, Fryer J. AGA technical review on short bowel syndrome and intestinal transplantation. Gastroenterology. 2003;124(4):1111–34.

    Article  PubMed  Google Scholar 

  2. O’Keefe SJ, Buchman AL, Fishbein TM, Jeejeebhoy KN, Jeppesen PB, Shaffer J. Short bowel syndrome and intestinal failure: consensus definitions and overview. Clin Gastroenterol Hepatol. 2006;4(1):6–10.

    Article  PubMed  Google Scholar 

  3. Tappenden KA. Pathophysiology of short bowel syndrome: considerations of resected and residual anatomy. J Parenter Enteral Nutr. 2014;38(1 Suppl):14S-22S.

    Article  CAS  Google Scholar 

  4. Severijnen R, Bayat N, Bakker H, Tolboom J, Bongaerts G. Enteral drug absorption in patients with short small bowel : a review. Clin Pharmacokinet. 2004;43(14):951–62.

    Article  CAS  PubMed  Google Scholar 

  5. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097.

    Article  PubMed  PubMed Central  Google Scholar 

  6. RoB2 Development Group. Revised Cochrane risk-of-bias tool for randomized trials (RoB 2) 2019. https://www.riskofbias.info/welcome/rob-2-0-tool/current-version-of-rob-2. Accessed 28 May 2021.

  7. RoB2 Development Group. The Risk Of Bias In Non-randomized Studies – of Interventions (ROBINS-I) assessment tool 2016. https://www.riskofbias.info/welcome/home/current-version-of-robins-i/robins-i-template-2016. Accessed 28 May 2021.

  8. The University of Adelaide. JBI’s critical appraisal tools 2020. https://jbi.global/critical-appraisal-tools. Accessed 28 May 2021.

  9. University of Oxford. Oxford Centre for Evidence-Based Medicine: Levels of Evidence 2009. https://www.cebm.ox.ac.uk/resources/levels-of-evidence/oxford-centre-for-evidence-based-medicine-levels-of-evidence-march-2009. Accessed 28 May 2021.

  10. Weser E. Nutritional aspects of malabsorption: short gut adaptation. Clin Gastroenterol. 1983;12(2):443–61.

    Article  CAS  PubMed  Google Scholar 

  11. Vanderhoof JA, Young RJ. Enteral and parenteral nutrition in the care of patients with short-bowel syndrome. Best Pract Res Clin Gastroenterol. 2003;17(6):997–1015.

    Article  PubMed  Google Scholar 

  12. Levine RR. Factors affecting gastrointestinal absorption of drugs. Am J Dig Dis. 1970;15(2):171–88.

    Article  CAS  PubMed  Google Scholar 

  13. Tappenden KA. Intestinal adaptation following resection. J Parenter Enteral Nutr. 2014;38(1 Suppl):23S-31S.

    Article  Google Scholar 

  14. Owens JP, Mirtallo JM, Murphy CC. Oral anticoagulation in patients with short-bowel syndrome. Drug Intell Clin Pharm. 1990;24(6):585–9.

    CAS  Google Scholar 

  15. Brophy DF, Ford SL, Crouch MA. Warfarin resistance in a patient with short bowel syndrome. Pharmacotherapy. 1998;18(3):646–9.

    CAS  PubMed  Google Scholar 

  16. Christensen LD, Vinter-Jensen L, Rasmussen HH, Kristensen SR, Larsen TB. Rivaroxaban as anticoagulant therapy in short bowel syndrome. Report of three cases. Thromb Res. 2015;135(3):568–70.

    Article  CAS  PubMed  Google Scholar 

  17. Kearns PJ Jr, O’Reilly RA. Bioavailability of warfarin in a patient with severe short bowel syndrome. J Parenter Enteral Nutr. 1986;10(1):100–1.

    Article  Google Scholar 

  18. Lutomski DM, Palascak JE, Bower RH. Warfarin resistance associated with intravenous lipid administration. J Parenter Enteral Nutr. 1987;11(3):316–8.

    Article  CAS  Google Scholar 

  19. Mitchell JF, Maas LC, Barger RC, Geizayd EA. Successful oral anticoagulant therapy in a patient with short bowel syndrome. Am J Hosp Pharm. 1977;34(2):171–2.

    CAS  PubMed  Google Scholar 

  20. Lutomski DM, LaFrance RJ, Bower RH, Fischer JE. Warfarin absorption after massive small bowel resection. Am J Gastroenterol. 1985;80(2):99–102.

    CAS  PubMed  Google Scholar 

  21. Gimmon Z. Oral anticoagulant therapy in patients who require nutritional support. J Parenter Enteral Nutr. 1987;11(1):102–3.

    Article  CAS  Google Scholar 

  22. Quintal S, Culley CL, Hayashi A. Warfarin absorption in short bowel syndrome. J Pharm Technol. 2019;35(1):43–4.

    Article  PubMed  Google Scholar 

  23. Stangier J, Eriksson BI, Dahl OE, Ahnfelt L, Nehmiz G, Stahle H, et al. Pharmacokinetic profile of the oral direct thrombin inhibitor dabigatran etexilate in healthy volunteers and patients undergoing total hip replacement. J Clin Pharmacol. 2005;45(5):555–63.

    Article  CAS  PubMed  Google Scholar 

  24. Gerotziafas GT, Elalamy I, Depasse F, Perzborn E, Samama MM. In vitro inhibition of thrombin generation, after tissue factor pathway activation, by the oral, direct factor Xa inhibitor rivaroxaban. J Thromb Haemost. 2007;5(4):886–8.

    Article  CAS  PubMed  Google Scholar 

  25. Cheung YW, Barco S, Mathot RAA, van den Dool EJ, Stroobants AK, Serlie MJ, et al. Pharmacokinetics of dabigatran etexilate and rivaroxaban in patients with short bowel syndrome requiring parenteral nutrition: the PDER PAN study. Thromb Res. 2017;160:76–82.

    Article  CAS  PubMed  Google Scholar 

  26. Douros A, Schlemm L, Bolbrinker J, Ebinger M, Kreutz R. Insufficient anticoagulation with dabigatran in a patient with short bowel syndrome. Thromb Haemost. 2014;112(2):419–20.

    CAS  PubMed  Google Scholar 

  27. Pollak PT, Sun GR, Kim RB. Personalized anticoagulation: guided apixaban dose adjustment to compensate for pharmacokinetic abnormalities related to short-bowel syndrome. Can J Cardiol. 2018;34(3):342.

    Article  PubMed  Google Scholar 

  28. Pfizer Canada ULC, Bristol-Myers Squibb Canada Co. ELIQUIS (apixaban) product monograph 2019. https://www.pfizer.ca/sites/default/files/201910/ELIQUIS_PM_229267_07Oct2019_Marketed_E.pdf. Accessed 28 May 2021.

  29. Raghavan N, Frost CE, Yu Z, He K, Zhang H, Humphreys WG, et al. Apixaban metabolism and pharmacokinetics after oral administration to humans. Drug Metab Dispos. 2009;37(1):74–81.

    Article  CAS  PubMed  Google Scholar 

  30. Gong IY, Kim RB. Importance of pharmacokinetic profile and variability as determinants of dose and response to dabigatran, rivaroxaban, and apixaban. Can J Cardiol. 2013;29(7 Suppl):S24-33.

    Article  PubMed  Google Scholar 

  31. Gulilat M, Tang A, Gryn SE, Leong-Sit P, Skanes AC, Alfonsi JE, et al. Interpatient variation in rivaroxaban and apixaban plasma concentrations in routine care. Can J Cardiol. 2017;33(8):1036–43.

    Article  PubMed  Google Scholar 

  32. Faye E, Drouet L, De Raucourt E, Green A, Bal-Dit-Sollier C, Boudaoud L, et al. Absorption and efficacy of acetylsalicylic acid in patients with short bowel syndrome. Ann Pharmacother. 2014;48(6):705–10.

    Article  CAS  PubMed  Google Scholar 

  33. Droppa M, Karathanos A, Gawaz M, Geisler T. Individualised dual antiplatelet therapy in a patient with short bowel syndrome after acute myocardial infarction with coronary artery stenting. BMJ Case Rep. 2015; 2015:bcr2014205227.

  34. Weliky I, Neiss E. Absorption of procainamide from the human intestine. Clin Pharmacol Ther. 1975;17:248.

    Google Scholar 

  35. Felser J, Hui KK. Procainamide absorption in short bowel syndrome. J Parenter Enteral Nutr. 1983;7(2):154–5.

    Article  CAS  Google Scholar 

  36. Vetticaden SJ, Lehman ME, Barnhart GR, Barr WH. Digoxin absorption in a patient with short-bowel syndrome. Clin Pharm. 1986;5(1):62–4.

    CAS  PubMed  Google Scholar 

  37. Krausz MM, Berry E, Freund U, Levy M. Absorption of orally administered digoxin after massive resection of the small bowel. Am J Gastroenterol. 1979;71(2):220–3.

    CAS  PubMed  Google Scholar 

  38. Heizer WD, Pittman AW, Hammond JE, Fitch DD, Bustrack JA, Hull JH. Absorption of digoxin from tablets and capsules in subjects with malabsorption syndromes. Drug Intell Clin Pharm. 1989;23(10):764–9.

    CAS  Google Scholar 

  39. Brown DD, Schmid J, Long RA, Hull JH. A steady-state evaluation of the effects of propantheline bromide and cholestyramine on the bioavailability of digoxin when administered as tablets or capsules. J Clin Pharmacol. 1985;25(5):360–4.

    Article  CAS  PubMed  Google Scholar 

  40. Ehrenpreis ED, Guerriero S, Nogueras JJ, Carroll MA. Malabsorption of digoxin tablets, gel caps, and elixir in a patient with an end jejunostomy. Ann Pharmacother. 1994;28(11):1239–40.

    Article  CAS  PubMed  Google Scholar 

  41. Gerson CD, Lowe EH, Lindenbaum J. Bioavailability of digoxin tablets in patients with gastrointestinal dysfunction. Am J Med. 1980;69(1):43–9.

    Article  CAS  PubMed  Google Scholar 

  42. Meier J, Nuesch E. Pindolol, a beta-adrenoceptor blocking agent with a negligible first-pass effect. Br J Clin Pharmacol. 1977;4(3):371–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Evard D, Le Quintrec Y, Aubry JP, Cheymol G, Cheymol A. Evaluation of pindolol absorption in malabsorption syndromes. Gastroenterol Clin Biol. 1983;7(4):398–404.

    CAS  PubMed  Google Scholar 

  44. Jobin G, Cortot A, Godbillon J, Duval M, Schoeller JP, Hirtz J, et al. Investigation of drug absorption from the gastrointestinal tract of man. I. Metoprolol in the stomach, duodenum and jejunum. Br J Clin Pharmacol. 1985;19(Suppl 2):97S-105S.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kolberg ES, Sue-Chu M, Rydning A. Heart rate control with oral metoprolol in a patient with Short Bowel Syndrome. Scand J Gastroenterol. 2017;52(1):92.

    Article  PubMed  Google Scholar 

  46. Godbillon J, Evard D, Vidon N, Duval M, Schoeller JP, Bernier JJ, et al. Investigation of drug absorption from the gastrointestinal tract of man.. III Metoprolol in the colon. Br J Clin Pharmacol. 1985;19(Suppl 2):113S-S118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Heading RC, Nimmo J, Prescott LF, Tothill P. The dependence of paracetamol absorption on the rate of gastric emptying. Br J Pharmacol. 1973;47(2):415–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Nelson EB, Abernethy DR, Greenblatt DJ, Ameer B. Paracetamol absorption from a feeding jejunostomy. Br J Clin Pharmacol. 1986;22(1):111–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Ueno T, Tanaka A, Hamanaka Y, Suzuki T. Serum drug concentrations after oral administration of paracetamol to patients with surgical resection of the gastrointestinal tract. Br J Clin Pharmacol. 1995;39(3):330–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Doddrell C, Tripathi SS. Successful use of pregabalin by the rectal route to treat chronic neuropathic pain in a patient with complete intestinal failure. BMJ Case Rep. 2015; 2015:bcr2015211511.

  51. Lamp KC, Freeman CD, Klutman NE, Lacy MK. Pharmacokinetics and pharmacodynamics of the nitroimidazole antimicrobials. Clin Pharmacokinet. 1999;36(5):353–73.

    Article  CAS  PubMed  Google Scholar 

  52. Bergan T, Bjerke PE, Fausa O. Pharmacokinetics of metronidazole in patients with enteric disease compared to normal volunteers. Chemotherapy. 1981;27(4):233–8.

    Article  CAS  PubMed  Google Scholar 

  53. Scholz I, Oberwittler H, Riedel KD, Burhenne J, Weiss J, Haefeli WE, et al. Pharmacokinetics, metabolism and bioavailability of the triazole antifungal agent voriconazole in relation to CYP2C19 genotype. Br J Clin Pharmacol. 2009;68(6):906–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Breit SM, Hariprasad SM, Mieler WF, Shah GK, Mills MD, Grand MG. Management of endogenous fungal endophthalmitis with voriconazole and caspofungin. Am J Ophthalmol. 2005;139(1):135–40.

    Article  CAS  PubMed  Google Scholar 

  55. Ikuma M, Watanabe D, Yagura H, Ashida M, Takahashi M, Shibata M, et al. Therapeutic drug monitoring of anti-human immunodeficiency virus drugs in a patient with short bowel syndrome. Intern Med. 2016;55(20):3059–63.

    Article  PubMed  PubMed Central  Google Scholar 

  56. McDonald S. Another case of high gentamicin clearance and volume of distribution in a patient with high output ileostomy. Aust N Z J Med. 1998;28(6):847–8.

    Article  CAS  PubMed  Google Scholar 

  57. Gaskin TL, Duffull SB. Enhanced gentamicin clearance associated with ileostomy fluid loss. Aust N Z J Med. 1997;27(2):196–7.

    Article  CAS  PubMed  Google Scholar 

  58. Joe LA, Jacobs RA, Guglielmo BJ. Systemic absorption of oral fluconazole after gastrointestinal resection. J Antimicrob Chemother. 1994;33(5):1070.

    Article  CAS  PubMed  Google Scholar 

  59. Tsunashima D, Kawamura A, Murakami M, Sawamoto T, Undre N, Brown M, et al. Assessment of tacrolimus absorption from the human intestinal tract: open-label, randomized, 4-way crossover study. Clin Ther. 2014;36(5):748–59.

    Article  CAS  PubMed  Google Scholar 

  60. Wallemacq PE, Verbeeck RK. Comparative clinical pharmacokinetics of tacrolimus in paediatric and adult patients. Clin Pharmacokinet. 2001;40(4):283–95.

    Article  CAS  PubMed  Google Scholar 

  61. Thielke J, Martin J, Weber FL, Schroeder TJ, Goretsky S, Hanto DW. Pharmacokinetics of tacrolimus and cyclosporine in short-bowel syndrome. Liver Transpl Surg. 1998;4(5):432–4.

    Article  CAS  PubMed  Google Scholar 

  62. Patel N, Smith S, Handa A, Darby C. The use of oral tacrolimus in a case of short bowel syndrome. Transpl Int. 2004;17(1):44–5.

    Article  PubMed  Google Scholar 

  63. McCloskey OM, Woodman A, Mitchell A, Smyth J. The challenge of achieving adequate oral immunosuppression in a renal transplant recipient who develops short bowel syndrome (Sbs). Ulster Med J. 2018;87(3):200–1.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Takeda I, Kawagishi N, Sekiguchi S, Akamatsu Y, Sato K, Miyagi S, et al. Long-term outcome of living related renal transplantation in a patient with short bowel syndrome. Tohoku J Exp Med. 2010;221(2):113–8.

    Article  CAS  PubMed  Google Scholar 

  65. Novelli M, Muiesan P, Mieli-Vergani G, Dhawan A, Rela M, Heaton ND. Oral absorption of tacrolimus in children with intestinal failure due to short or absent small bowel. Transpl Int. 1999;12(6):463–5.

    Article  CAS  PubMed  Google Scholar 

  66. Olio DD, Gupte G, Sharif K, Murphy MS, Lloyd C, McKiernan PJ, et al. Immunosuppression in infants with short bowel syndrome undergoing isolated liver transplantation. Pediatr Transplant. 2006;10(6):677–81.

    Article  CAS  PubMed  Google Scholar 

  67. Hasegawa T, Nara K, Kimura T, Soh H, Sasaki T, Azuma T, et al. Oral administration of tacrolimus in the presence of jejunostomy after liver transplantation. Pediatr Transplant. 2001;5(3):204–9.

    Article  CAS  PubMed  Google Scholar 

  68. Drewe J, Beglinger C, Kissel T. The absorption site of cyclosporin in the human gastrointestinal tract. Br J Clin Pharmacol. 1992;33(1):39–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Chenhsu RY, Wu Y, Katz D, Rayhill S. Dose-adjusted cyclosporine c2 in a patient with jejunoileal bypass as compared to seven other liver transplant recipients. Ther Drug Monit. 2003;25(6):665–70.

    Article  CAS  PubMed  Google Scholar 

  70. Allam BF, Tillman JE, Thomson TJ, Crossling FT, Gilbert LM. Effective intravenous cyclosporin therapy in a patient with severe Crohn’s disease on parenteral nutrition. Gut. 1987;28(9):1166–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Roberts R, Sketris IS, Abraham I, Givner ML, MacDonald AS. Cyclosporine absorption in two patients with short-bowel syndrome. Drug Intell Clin Pharm. 1988;22(7–8):570–2.

    Article  CAS  PubMed  Google Scholar 

  72. Hulme B, James VH, Rault R. Absorption of enteric and non-enteric coated prednisolone tablets. Br J Clin Pharmacol. 1975;2(4):317–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bergrem H, Opedal I. Bioavailability of prednisolone in patients with intestinal malabsorption: the importance of measuring serum protein-binding. Scand J Gastroenterol. 1983;18(4):545–9.

    Article  CAS  PubMed  Google Scholar 

  74. Peng B, Lloyd P, Schran H. Clinical pharmacokinetics of imatinib. Clin Pharmacokinet. 2005;44(9):879–94.

    Article  CAS  PubMed  Google Scholar 

  75. Beumer JH, Natale JJ, Lagattuta TF, Raptis A, Egorin MJ. Disposition of imatinib and its metabolite CGP74588 in a patient with chronic myelogenous leukemia and short-bowel syndrome. Pharmacotherapy. 2006;26(7):903–7.

    Article  PubMed  Google Scholar 

  76. Yamazaki R, Aisa Y, Mori T, Iketani O, Ikeda Y, Okamoto S. Administration of imatinib mesylate in patients with chronic myeloid leukemia with short bowel. Leuk Lymphoma. 2009;50(4):670–2.

    Article  CAS  PubMed  Google Scholar 

  77. Larson RA, Druker BJ, Guilhot F, O’Brien SG, Riviere GJ, Krahnke T, et al. Imatinib pharmacokinetics and its correlation with response and safety in chronic-phase chronic myeloid leukemia: a subanalysis of the IRIS study. Blood. 2008;111(8):4022–8.

    Article  CAS  PubMed  Google Scholar 

  78. Kerr GW, McGuffie AC, Wilkie S. Tricyclic antidepressant overdose: a review. Emerg Med J. 2001;18(4):236–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Robbins B, Reiss RA. Amitriptyline absorption in a patient with short bowel syndrome. Am J Gastroenterol. 1999;94(8):2302–4.

    Article  CAS  PubMed  Google Scholar 

  80. Broyles JE, Brown RO, Self TH, Frederick RC, Luther RW. Nortriptyline absorption in short bowel syndrome. J Parenter Enteral Nutr. 1990;14(3):326–7.

    Article  CAS  Google Scholar 

  81. DiMartini A. Short gut syndrome, tricyclic antidepressants, and prolonged QT interval syndromes. Psychosomatics. 1997;38(4):401–2.

    Article  CAS  PubMed  Google Scholar 

  82. Faye E, Corcos O, Lancelin F, Decleves X, Bergmann JF, Joly F, et al. Antidepressant agents in short bowel syndrome. Clin Ther. 2014;36(12):2029-2033 e3.

    Article  CAS  PubMed  Google Scholar 

  83. Gundert-Remy U, Hildebrandt R, Stiehl A, Weber E, Zurcher G, Da Prada M. Intestinal absorption of levodopa in man. Eur J Clin Pharmacol. 1983;25(1):69–72.

    Article  CAS  PubMed  Google Scholar 

  84. Benvenga S, Bartolone L, Squadrito S, Lo Giudice F, Trimarchi F. Delayed intestinal absorption of levothyroxine. Thyroid. 1995;5(4):249–53.

    Article  CAS  PubMed  Google Scholar 

  85. Colucci P, Yue CS, Ducharme M, Benvenga S. A review of the pharmacokinetics of levothyroxine for the treatment of hypothyroidism. Eur Endocrinol. 2013;9(1):40–7.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Stone E, Leiter LA, Lambert JR, Silverberg JD, Jeejeebhoy KN, Burrow GN. L-thyroxine absorption in patients with short bowel. J Clin Endocrinol Metab. 1984;59(1):139–41.

    Article  CAS  PubMed  Google Scholar 

  87. Azizi F, Belur R, Albano J. Malabsorption of thyroid hormones after jejunoileal bypass for obesity. Ann Intern Med. 1979;90(6):941–2.

    Article  CAS  PubMed  Google Scholar 

  88. Topliss DJ, Wright JA, Volpe R. Increased requirement for thyroid hormone after a jejunoileal bypass operation. Can Med Assoc J. 1980;123(8):765–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Bevan JS, Munro JF. Thyroxine malabsorption following intestinal bypass surgery. Int J Obes. 1986;10(3):245–6.

    CAS  PubMed  Google Scholar 

  90. Smallridge RC, Burman KD, Wartofsky L. Malabsorption of thyroxine, calcium, and vitamin D in a thyroparathyroidectomized woman: efficacy of therapy with medium-chain triglyceride oil. Mil Med. 1990;155(4):156–8.

    Article  CAS  PubMed  Google Scholar 

  91. Aly A, Barany F, Kollberg B, Monsen U, Wisen O, Johansson C. Effect of an H2-receptor blocking agent on diarrhoeas after extensive small bowel resection in Crohn’s disease. Acta Med Scand. 1980;207(1–2):119–22.

    CAS  PubMed  Google Scholar 

  92. Russo J Jr, Watson WA, Nelson EW, Schentag JJ. Cimetidine bioavailability after massive small bowel resection. Clin Pharm. 1982;1(6):558–61.

    PubMed  Google Scholar 

  93. Backman L, Beerman B, Groschinsky-Grind M, Hallberg D. Malabsorption of hydrochlorothiazide following intestinal shunt surgery. Clin Pharmacokinet. 1979;4(1):63–8.

    Article  CAS  PubMed  Google Scholar 

  94. Beermann B, Groschinsky-Grind M, Rosen A. Absorption, metabolism, and excretion of hydrochlorothiazide. Clin Pharmacol Ther. 1976;19(5 Pt 1):531–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Ms. Subashini Gunasegaran and Ms. Emily Poh for their input into the conceptualization of the study

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elaine Ah-Gi Lo.

Ethics declarations

Funding

No funding was received to conduct this review.

Availability of Data and Material

Not applicable.

Code Availability

Code Availability.

Conflicts of Interest

All authors have no conflicts of interest.

Ethics Approval

Not applicable

Consent to Participate

Not applicable

Consent for Publication

Not applicable

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 530 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, .BT., Tan, .K., Law, .SC. et al. Changes of Drug Pharmacokinetics in Patients with Short Bowel Syndrome: A Systematic Review. Eur J Drug Metab Pharmacokinet 46, 465–478 (2021). https://doi.org/10.1007/s13318-021-00696-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13318-021-00696-y

Navigation